Патологические клетки крови это. Патология клетки и болезнь

В разделе научной медицины, именуемом «общая патология клетки», изучаются как морфологические изменения, происходящие в элементарных единицах строения организма, так и нарушения их функций. К этим нарушениям могут привести регрессивные и прогрессивные процессы. Говоря о формах гибели клеток, различают некроз и апоптоз. Обо всех этих понятиях, а также об основных механизмах повреждения клетки вы узнаете в данном материале.

Основные механизмы повреждения клетки

В основе патологии клетки лежит ее повреждение. Причины повреждения клеток, приводящие к их гибели, подразделяются на физические, химические и биологические. Под физическими понимаются травмы, высокая и низкая температура, радиация. Под химическими – воздействие кислот, щелочи, солей тяжелых металлов, цитотоксических веществ, например, цианидов, а также лекарственных средств при их передозировке.. К биологическим относятся патогенные микроорганизмы, а также факторы системы иммунитета.

Рассматривая характеристику понятия «повреждение» в разделе «патология клетки», особое внимание стоит уделить механизмам этого процесса.

Механизмов повреждения клетки достаточно много. Ниже описаны основные из них.

Расстройство энергетического обеспечения клетки бывает связано с нарушениями процессов окисления глюкозы, что, как известно, является основным источником энергии для «зарядки» (синтеза) главного клеточного «аккумулятора» - АТФ. Очевидно, что следствием недостатка энергии является угнетение большинства жизненных процессов клетки.

Повреждение мембран. Как известно, клеточные мембраны являются структурной основой, как клеточных органелл, так и клетки в целом, поэтому их повреждение неизбежно влечет нарушение клеточной анатомии и физиологии.

Дисбаланс воды и ионов приводит либо к сморщиванию, либо к набуханию клеток вследствие изменения соотношения осмотического давления внутри и вне клетки. Кроме того, процессы передачи сигнальных импульсов основаны на концентрации электролитов по обе стороны клеточной мембраны, что при нарушении ионного баланса приводит к расстройствам передачи нервных импульсов и дискоординации содружественной деятельности групп клеток в тканях и органах.

Повреждение генетического аппарата клеточного ядра приводит к нарушению процессов воспроизводства в клетке, следствием чего, например, может явиться превращение нормальной клетки в опухолевую.

Расстройства регуляции внутриклеточных процессов приводят как к расстройству процессов жизнедеятельности клетки как таковой, так и к нарушению выполнения клеткой своих функций в качестве структурной единицы тканей и органов макроорганизма.

Формы гибели клеток: некроз и апоптоз

Два основных механизма гибели клетки - это некроз и апоптоз.

Основные отличия некроза и апоптоза клетки следующие:

  • некроз происходит из-за внешних и внутренних - повреждающих факторов, апоптоз - обычно из-за естественных (как правило, внутренних) причин;
  • некроз - это гибель как отдельных клеток (группы клеток), так и участка ткани, апоптоз - смерть отдельных клеток;
  • механизм некроза клеток - это бессистемное, случайное поражение различных частей элементарных единиц строения организма и участков ткани, апоптоз - упорядоченный внутренний процесс;
  • при патологии клеток некроз окружающая ткань реагирует воспалением, при апоптозе воспаления не бывает.

Механизм гибели клеток некроз: причины и формы

Некроз - это гибель клетки организма, группы клеток или участка ткани под действием повреждающих факторов, интенсивность которых привела к тому, что изменения в клетке стали необратимыми и некомпенсируемыми. Некроз - это исключительно патологическое явление, которое возникает вследствие заболеваний и травм, т. е. биологически нецелесообразно. Некроз обычно приводит к возникновению другого типового патологического процесса - воспалению. Некроз - омертвение, гибель клеток и тканей в живом организме.

Говоря о некрозе как механизме гибели клетки, соответствии с различными причинами различают:

  • травматический некроз (происходит в связи с прямым повреждающим действием высокой или низкой температуры, кислот, щелочей и т. п. факторов на клетки и ткани);
  • токсический некроз (причиной гибели клеток в этом случае является воздействие на ткани каких-либо - чаше бактериальных - токсинов);
  • трофоневротический некроз (возникает в результате нарушения иннервации определенного участка ткани, что ведет к сосудистым нарушениям и необратимым дистрофическим изменениям);
  • аллергический некроз (является следствием аллергической реакции немедленного типа; чаше всего он развивается по типу фибриноидного некроза;
  • сосудистый некроз (возникает при нарушении кровообращения определенной области вследствие тромбоза, эмболии, сдавления сосуда, он носит название ишемического некроза - инфаркта).

Различают следующие формы некроза:

1. коагуляционный (сухой) некроз (в основе его лежат процессы денатурации тканевых белков и обезвоживание);

2. колликвационный некроз - влажный некроз, характеризуется размягчением и расплавлением погибших тканей;

3. гангрена - некроз тканей , соприкасающихся с внешней средой (различают сухую гангрену, при которой мертвая ткань высыхает, сморщивается, мумифицируется, и влажную гангрену, при которой омертвевшая ткань подвергается разложению гнилостными бактериями; разновидностью гангрены являются трофоневротические некрозы, возникающие у ослабленных лежачих тяжелобольных пролежни на участках поверхности тела в области костных выступов - крестца, лопаток, пяток, локтевых отростков, затылка);

4. секвестр (участок мертвой ткани, свободно располагающейся среди живой - чаще всего это костные секвестры при хроническом остеомиелите);

Исходы некроза. Благоприятным вариантом исхода является возникновение пограничного воспаления с четко обозначенной границей некроза и здоровой ткани - демаркационной линией. Позднее некротические массы постепенно рассасываются; они также могут замешаться соединительной тканью, в этом случае говорят об организации. Если некротический участок обрастает соединительнотканной капсулой, то данный процесс носит название инкапсуляции. В организовавшийся очаг могут выпадать соли кальция (обызвествление, или петрификация); а в некоторых случаях здесь образуется участок костной ткани (оссификация).

Неблагоприятным вариантом исхода некроза является присоединение инфекции и гнойное расплавление некротического участка, что сопровождается тяжелыми осложнениями.

Процесс гибели клеток организма апоптоз

От некроза необходимо отличать процесс гибели клеток апоптоз.

Апоптоз - это запрограммированная смерть клетки. Как правило, апоптоз является естественным биологическим процессом, однако в некоторых случаях апоптоз включается вследствие нарушения нормальных физиологических процессов, т. е. при патологии. В результате апоптоза клетка разделяется на отдельные покрытые клеточной мембраной фрагменты - апоптотические тельца, которые поглощаются макрофагами.

Механизмы апоптоза включаются еще во время внутриутробного периода, когда у эмбриона, например, редуцируется хвост. После рождения механизмы апоптоза в частности отвечают за обновление клеток эндометрия, эпителия кожи и кишечника, клеток крови. Собственные клетки организма умерщвляются благодаря механизму апоптоза, если они заражены вирусами или приобрели характер опухолевых.

Процесс гибели клетки апоптоз состоит из:

  • сигнальной фазы, во время которой включается его механизм под воздействием различных факторов на специальные клеточные рецепторы;
  • эффекторной фазы, во время которой активизируются специальные белки, разрушающие клетку;
  • деградационной фазы (фазы экзекуции, или деструкции), во время которой и происходит вышеупомянутая фрагментация клетки под действием белков-разрушителей. Запуск апоптоза не является необратимым, так как у клетки имеются рецепторы, активизация которых может подавить уже запущенный процесс апоптоза.

В старости у большинства клеток отмечается тенденция к повышению чувствительности к запуску апоптоза (это справедливо, правда, в отношении только определенных клеток - нервной ткани, клеток печени и сердца, хрящевой ткани, Т-лимфоцитов и т. д.).

Польза хиджамы (капиллярного кровопускания) Так, при китайском и исламском кровопускании при разрыве капилляров возникает капельное кровотечение, вследствие чего активируется система гемостаза. Через 1 - 3 секунды система гемостаза запускает процесс образования тромба, который должен закупорить поврежденные сосуды и остановить истечение крови. Свертывание крови осуществляется за счет активации огромного количества ферментов и биологически активных веществ, которые воздействуют также на сосуды, окружающие ткани и расположенные в области повреждения нервные окончания. Благодаря раздражению нервных окончаний в спинной мозг поступают интенсивные сигналы, активирующие...

Читать полностью...

Плазмолифтинг Зеленоград!

Плазмолифтинг - это особая методика омоложения кожи, не требующая хирургического вмешательства. Она заключается в ведении в кожу плазмы, насыщенной тромбоцитами. У пациента делается забор крови в специальные пробирки для плазмолифтинга, после чего из нее выделяются красные кровяные тельца (тромбоциты), способствующие стимуляции работы клеток соединительных тканей. Выделенная плазма вводится под кожу при помощи инъекций и в конечном итоге, в организме пациента запускается процесс омоложения. Почему выделяются исключительно тромбоциты? Дело в том, что они содержат молекулы, которые помогают в заживлении поврежденных тканей...

Читать полностью...

Общий анализ крови у детей. Норма и расшифровка результатов

Утащила у Анна Оранжик Нашла мегаполезную статью с расшифровкой показателей и референсными значениями для разных возрастов.

Здесь мы рассмотрим лишь те вопросы, которые связаны со значением патологии клеточных мембран в развитии злокачественных новообразований. Хотя, по-видимому, нельзя считать злокачественную опухоль результатом только мембранной патологии, тем не менее в атипичных клетках отмечаются глубокие изменения мембран, которые могут таким образом становиться важным звеном патогенеза злокачественных образований.

1. Электронно-микроскопические исследования показали, что в клетках злокачественных опухолей наблюдаются эмбриональные особенности строения мембран, выражающиеся в слиянии между собой мембран внутриклеточных органелл и плазмолеммы. Мембранная поверхность клетки таким образом резко увеличивается, что в конечном итоге приводит к существенным изменениям транспортных процессов, питания клетки, восприятия мембранами информации и т.д.

2. В одной мембране нормальных клеток может существовать более сотни неодинаковых по структуре липидных веществ, причем соотношения между ними специфичны для определенного типа мембран. Каждая мембрана имеет присущий только ей липидный состав. Во многих опухолевых клетках эти различия в липидном компоненте нивелируются или даже полностью отсутствуют. Наблюдается монотонность липидной структуры мембран, причем она выражена тем сильнее, чем быстрее растет опухоль и чем она злокачественнее.

3. Американский исследователь Коумен установил факт ослабления силы сцепления между опухолевыми клетками: она оказалась в десять раз меньшей, чем для нормальных клеток той же ткани.

Электронно-микроскопический анализ показал, что у опухолевых клеток имеется меньше участков сцепления друг с другом, чем у нормальных. Предполагают, что сцепление клеток происходит благодаря контакту фиксированного на мембранах кальция с отрицательно заряженными молекулярными группировками на мембране другой клетки. В качестве доказательства роли кальция в этом сцеплении можно привести наблюдения, показавшие, что обработка эмбрионов амфибий ЭДТА (вещество, связывающее ионы кальция) приводила к распаду ткани на отдельные клетки. Когда же к этим клеткам добавляли ионы кальция, они вновь объединялись между собой и продолжали эмбриональное развитие.

Поскольку клетки перестают сцепливаться между собой при их обработке трипсином, можно предположить, что они склеиваются и белковыми компонентами. Швейцарский исследователь Бюргер на клетках губок показал, что важную роль в этом склеивании играют ионы кальция и так называемый фактор агрегации, представляющий собой сложный комплекс белков и сахаристых веществ. Альберт Сент-Дьерди отводит важную роль в этом сцеплении глиоксалевой кислоте, поскольку сцепление клеток ослабевает при обработке их ферментом глиоксалазой, а добавление к опухолевым клеткам метилглиоксаля усиливает их контакт между собой. Предполагают также, что рецепторы контактов у опухолевых клеток более подвижны, так как они «плавают» в более жидких липидах, поэтому они могут сгруппировываться, и число межклеточных контактов таким образом уменьшается.

4. Процесс сцепления нормальных клеток между собой приводит еще к одному феномену - контактному торможению. Две нормальные клетки, будучи помещенными в каплю жидкости и передвигаясь в ней, при контакте и сцеплении между собой перестают двигаться; кроме того в них начинает тормозиться синтез ДНК, в результате чего они перестают делиться и расти. Чем больше клеток сцеплено друг с другом, тем сильнее тормозится их рост и деление. У опухолевых клеток эти явления не наблюдаются. В чем причина отсутствия у опухолевых клеток контактного торможения? В потере способности к передаче сигнала, останавливающего рост и деление, или в отсутствии способности воспринимать такой сигнал? Опыты американского исследователя Стоукера проливают некоторый свет на эту проблему. Он показал, что при смешении нормальных фибробластов в культуре тканей с трансформированными в последних наблюдалось торможение деления и роста. Таким образом, дело, по-видимому, заключается в потере опухолевыми клетками способности к генерации соответствующего сигнала. Отсюда следует, что малое количество опухолевых клеток еще может быть нормализовано обычным клеточным окружением, а большое - нет. Другими словами, для того чтобы развилась опухоль, количество опухолевых клеток должно достигнуть определенной критической величины.

Проницаемость мембран опухолевых клеток по сравнению с нормальными является повышенной, по-видимому, из-за сокращения количества внеклеточных контактов и увеличения свободной мембранной поверхности. Вследствие этого в бластомных клетках усиливаются транспортные процессы и происходит более быстрое «изнашивание» гиперфункционирующих мембранных насосов.

Нарушение жизнедеятельности организма человека при различных экстремальных состояниях и заболеваниях всегда, так или иначе, связано с изменением функционирования клеток. Клетка является структурно-функциональной единицей тканей и органов. В ней протекают процессы, лежащие в основе энергетического и пластического обеспечения структур и функций тканей. Под действием неблагоприятных факторов окружающей среды, нарушение функционирования клеток может приобретать стойкий характер и быть обусловленным их повреждением. Патология всегда начинается с повреждения, когда адаптационные возможности становятся несостоятельными. Любой патологический процесс протекает с большей или меньшей степенью и масштабом повреждения клеток, которое выражается в определенном нарушении их структуры и функций. Исходя из этого, под повреждением клетки понимают такие изменения ее структуры, обмена веществ, физико-химических свойств и функций, которые ведут к нарушению ее жизнедеятельности и которые сохраняются после удаления повреждающего агента. Однако, принимая во внимание, что организм, как система, есть совокупность элементов и связей между ними, то природу болезни необходимо рассматривать с двояких позиций - структурно-метаболических и информационных, поскольку она связана как с повреждением самих клеток, их исполнительного клеточного аппарата, так и с нарушением информационных процессов - сигнализации, рецепции и межклеточных связей, т.е. с дизрегуляцией, а по терминологии Г.Н. Крыжановского с дизрегуляторной патологией. В то же время, несмотря на разнообразие патогенных факторов, действующих на клетки, они отвечают принципиально однотипными реакциями, в основе которых лежат тканевые механизмы клеточной альтерации. Таким образом, повреждение следует рассматривать как типовой патологический процесс, основу которого составляют нарушения внутриклеточного гомеостаза, структурой целостности клетки, а также ее функциональной способности.

Переходя к конкретным аспектам патофизиологии повреждения, исходя из учения основоположника клеточной патологии Р. Вирхова, учитывая «приоритет повреждения элементов над расстройством связи», в начале рассмотрим типовые нарушения внутриклеточного гомеостаза, патохимические и патофизиологические аспекты повреждения клетки, ее исполнительного аппарата.

Причины нарушения функционирования и повреждения клетки

Непосредственной причиной нарушения функционирования клетки служат изменения в ее окружении, в то время как повреждение клетки вызвано действием на нее повреждающих агентов. Повреждение клетки, сущность которого составляют нарушения внутриклеточного гомеостаза, может быть результатом непосредственного (прямых) или опосредованного, вследствие нарушения межклеточного взаимодействия, постоянства внутренней среды самого организма (гипоксия, ацидоз, алкалоз, гипогликемия, гиперкалиемия, повышение содержания в организме конечных продуктов метаболизма), воздействия множества патогенных факторов, которые подразделяются на три основные группы: физического, химического и биологического характера.

Среди факторов физического характера причинами повреждения клеток наиболее часто являются следующие:

Механические воздействия: они обусловливают нарушение структуры плазмолеммы и мембран субклеточных образований;

Температурный фактор: повышенная температура среды, в которой находится клетка, до 45-50°С и более может привести к денатурации белка, нуклеиновых кислот, декомпозиции липопротеидных комплексов, повышению проницаемости клеточных мембран и другим изменениям. Значительное снижение температуры может обусловить существенное замедление или необратимое прекращение метаболических процессов в клетке, кристаллизацию внутриклеточной жидкости и разрыв мембран;

Изменения осмотического давления в клетке: накопление в ней продуктов неполного окисления органических субстратов, а также избытка ионов сопровождается током жидкости в клетку по градиенту осмотического давления, набуханием ее и растяжением (вплоть до разрыва) ее плазмолеммы и мембран органелл. Снижение внутриклеточного осмотического давления или повышение его во внеклеточной среде ведет к потере клеткой жидкости, ее сморщиванию (пикнозу) и нередко к гибели;

Воздействие ионизирующей радиации, обусловливающей образование свободных радикалов и активацию перекисных свободно-радикальных процессов, продукты которых повреждают мембраны и денатурируют ферменты клеток;

Гравитационные, электромагнитные факторы.

Повреждение клеток нередко вызывают воздействия факторов химической природы. К их числу относятся разнообразные вещества экзогенного и эндогенного происхождения: кислоты, щелочи, соли тяжелых металлов, яды растительного и животного происхождения, продукты нарушенного метаболизма. Так, цианиды подавляют активность цитохромоксидазы. Этанол и его метаболиты ингибируют многие ферменты клетки. Вещества, содержащие соли мышьяка, угнетают пируватоксидазу. Неправильное применение лекарственных средств также может привести к повреждению клеток. Например, передозировка строфантина обусловливает значительное подавление активности К + - Na + -АТФазы сарколеммы клеток миокарда, что ведет к дисбалансу интрацеллюлярного содержания ионов и жидкости.

Важно, что повреждение клетки может быть обусловлено как избытком, так и дефицитом одного и того же фактора. Например, избыточное содержание кислорода в тканях активирует процесс перекисного окисления липидов (ПОЛ), продукты которого повреждают ферменты и мембраны клеток. С другой стороны, снижение содержания кислорода обусловливает нарушение окислительных процессов, понижение образования АТФ и, как следствие, расстройство функций клетки.

Повреждение клеток нередко обусловливается факторами иммунных и аллергических процессов. Они могут быть вызваны, в частности, сходством антигенов, например, микробов и клеток организма.

Повреждение может быть также результатом образования антител или влияния Т-лимфоцитов, действующих против неизмененных клеток организма вследствие мутации в геноме В- или Т-лимфоцитов иммунной системы.

Важную роль в поддержании метаболических процессов в клетке играют вещества, поступающие в нее из окончаний нейронов, в частности, нейромедиаторы, трофогены, нейропептиды. Уменьшение или прекращение их транспорта является причиной расстройства обмена веществ в клетках, нарушения их жизнедеятельности и развития патологических состояний, получивших название нейродистрофий.

Кроме указанных факторов, повреждение клеток нередко бывает обусловлено значительно повышенной функцией органов и тканей. Например, при длительной чрезмерной физической нагрузке возможно развитие сердечной недостаточности в результате нарушения жизнедеятельности кардиомиоцитов.

Повреждение клетки может быть результатом действия не только патогенных факторов, но и следствием генетически запрограммированных процессов. Примером может служить гибель эпидермиса, эпителия кишечника, эритроцитов и других клеток в результате процесса их старения. К механизмам старения и смерти клетки относят постепенное необратимое изменение структуры мембран, ферментов, нуклеиновых кислот, истощение субстратов метаболических реакций, снижение устойчивости клеток к патогенным воздействиям.

По происхождению все причинные факторы повреждения клетки делят на: экзогенные и эндогенные; инфекционного и неинфекционного генеза.

Общие механизмы повреждения клеток

В зависимости от скорости развития и выраженности основных проявлений повреждение клетки может быть острым и хроническим. В зависимости от степени нарушения внутриклеточного гомеостаза повреждение бывает обратимым и необратимым.

Выделяются два патогенетических варианта повреждения клеток.

Насильственный вариант . Развивается в случае действия на исходно здоровую клетку физических, химических и биологических факторов, интенсивность которых превышает обычные возмущающие воздействия, к которым клетка адаптирована. Наиболее чувствительны к данному варианту повреждения функционально малоактивные клетки, обладающие малой мощностью собственных гомеостатических механизмов.

Цитопатический вариант . Возникает в результате первичного нарушения защитно-компенсаторных гомеостатических механизмов клетки. В этом случае фактором, запускающим патогенетические механизмы повреждения, являются естественные для данной клетки возмущающие стимулы, которые в этих условиях стано­вятся повреждающими. К цитопатическому варианту относятся все виды повреждения клетки вследствие отсутствия каких-либо необходимых ей компонентов (гипоксическое, при голодании, гиповитаминоз, нейротрофическое, при антиоксидантной недостаточности, при генетических дефектах и др.). К цитопатическому повреждению наиболее чувствительны те клетки, интенсивность возмущений, а, следовательно, и функциональная активность которых в естественных условиях очень высоки (нейроны, миокардиоциты).

На уровне клетки повреждающие факторы «включают» несколько патогенетических звеньев. К их числу относят:

Расстройство процессов энергетического обеспечения клеток;

Повреждение мембран и ферментных систем;

Дисбаланс ионов и жидкости;

Нарушение генетической программы и/или ее реализации;

Расстройство механизмов регуляции функции клеток.

Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, ее доставки и использования.

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ -зависимой АТФазы «кальциевой помпы» саркоплазмати-ческого ретикулума и др.), баланса ионов и жидкости, снижения мембранного потенциала, а также механизмов регуляции клетки.

Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, что основные свойства клетки в существенной мере зависят от состояния ее мембран и связанных с ними энзимов.

Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация перекисного окисления их компонентов. Образующиеся в больших количествах радикалы кислорода (супероксид и гидроксильный радикал) и липидов вызывают: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране - т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПОЛ. Указанные процессы, в свою очередь, обусловливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

В норме состав и состояние мембран модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации, проникновению ионов кальция в клетку). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфатидилхолин, фосфатидил-этаноламин, фосфатидилсерин. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих - как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи - означает «оба», «два»). Накопление в большом количестве амфифилов в мембранах, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненно важных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

Следствием дисбаланса ионов является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнцефалограммы при нарушении структуры и функций нейронов головного мозга.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Это может проявляться гипергидратацией клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжения, нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и/или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, дерепрессия патогенных генов (например, онкогенов), подавление активности жизненно важных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки). Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

На уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

На уровне клеточных т.н. «вторых посредников» (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

На уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Рассмотрев патохимические аспекты повреждения клетки, необходимо не забывать, что проблема клеточного повреждения имеет и другую, очень важную сторону - информационный аспект проблемы повреждения клетки. Связь между клетками, те сигналы, которыми они обмениваются тоже могут быть источниками болезни.

В большинстве случаев клетки в организме управляются химическими регуляторными сигналами, а именно гормонами, медиаторами, антителами, субстратами, ионами. Недостаток или отсутствие того или иного сигнала, как и избыток, может воспрепятствовать включению тех или иных адаптивных программ или способствовать излишне интенсивному, а, возможно, ненормально долгому их функционированию, что приводит к определенным патологическим последствиям. Особый случай представляет достаточно распространенная ситуация, когда клетка ошибочно принимает один сигнал за другой - так называемая мимикрия биорегуляторов, приводящая к серьезным регуляторным расстройствам. Примерами болезней, вызванных патологией сигнализации, могут служить: паркинсонизм, квашиоркор, инсулинозависимый сахарный диабет (патология, обусловленная дефицитом сигнала), болезнь фон Базедова, синдром Иценко-Кушинга, ожирение (патология, обусловленная избытком сигнала). Особенно ярко видна патогенность избытка субстратов на примере ожирения.

В ряде случаев, даже при адекватной сигнализации, клетка не в состоянии ответить должным образом, если она «слепа и глуха» по отношению к данному сигналу. Именно такая ситуация создается при отсутствии или дефиците рецепторов, соответствующих какому-либо биорегулятору. В частности, примером такой патологии может служить семейная наследственная гиперхолестеринемия, патогенез которой связан с дефектом белка-рецептора, ответственного за распознавание клетками сосудистой стенки и некоторых других тканей и органов белкового компонента липопротеинов низкой и очень низкой плотности - апопротеина В, а также инсулинрезистивная форма сахарного диабета.

Однако, даже при адекватной сигнализации и правильном распознавании сигналов клеточными рецепторами, клетки не в состоянии подключить надлежащие адаптационные программы, если отсутствует передача информации от рецепторов поверхностной мембраны внутрь клетки. По современным представлениям механизмы, опосредующие внутриклеточную передачу сигнала на геном клетки, разнообразны. Особое значение имеют пути пострецепторной передачи сигналов в клетке через систему G-белков (гуанозинтрифосфатсвязывающих белков). Эти белки - передатчики занимают ключевое положение в обмене информацией между поверхностно раположенными на клеточных мембранах рецепторами и внутриклеточным регуляторным аппаратом, потому что они способны интегрировать сигналы, воспринимаемые несколькими различными рецепторами, и в ответ на определенный рецепторно-опосредованный сигнал могут включать множество различных эффекторных программ, вводя в действие сеть различных внутриклеточных модуляторов, посредников, таких как цАМФ и цГМФ.

Неадекватное использование клеткой своих адаптационных возможностей при ряде наследственных и приобретенных болезней может быть результатом сбоев в работе не только пострецепторных информационных механизмов, но и дефектом генетических программ и/или механизмов их реализации (в результате повреждения мутациями ДНК, возникновения хромосомных аномалий). Из-за этого они либо не реализуются, либо дают неадекватный или несоответствующий ситуации результат.

Основные проявления повреждений клетки

Дистрофии . Под дистрофиями (dys - нарушение, расстройство, trophe- питание) понимают нарушения обмена веществ в клетках и тканях, сопровождающиеся расстройствами их функций, пластических проявлений, а также структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются:

Синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;

Избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;

Декомпозиция (фанероз), например, белково-липидных комплексов мембран;

Инфильтрация клеток и межклеточного вещества, органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных клеточных дистрофий относят белковые (диспротеинозы), жировые (липидозы), углеводные и минеральные.

Дисплазии (dys - нарушение, расстройство, plaseo- образую) представляют собой нарушение процесса развития клеток, проявляющееся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причиной дисплазии является повреждение генома клетки. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения, в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраниться при прекращении действия причинного фактора.

Основным механизмом дисплазии является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Структурными признаками дисплазии являются изменения величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов. В качестве примеров дисплазии клеток можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при патологии гемоглобина, многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе Реклингхаузена. Клеточные дисплазии являются одним из проявлений атипизма опухолевых клеток.

Изменение структуры и функций клеточных органелл при повреждении клетки . Повреждение клетки характеризуется большим или меньшим нарушением структуры и функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения тех или иных органелл.

При действии патогенных факторов отмечается уменьшение числа митохондрий по отношению к общей массе клетки. Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий является уменьшение или увеличение их размеров и формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембраны, фрагментации и гомогенизации крист. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов внутри клетки.

При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки.

При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопровождаются снижением интенсивности процесса синтеза белка в клетке.

Повреждение эндоплазматической сети и аппарата Гольджи сопровождается расширением канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости. Имеет место очаговая деструкция мембран канальцев сети, их фрагментация.

Повреждение ядра сочетается с изменением его формы, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двуконтурности или разрывами ядерной оболочки.

Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в цитоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме. Изменение состояния цитоплазмы, в свою очередь, существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе, на функцию органелл, на процессы восприятия регулирующих и других влияний на клетку.

Некроз и аутолиз . Некроз (гр. necros - мертвый) - гибель клеток и тканей, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом. По И.В. Давыдовскому некробиоз - это процесс отмирания клеток. Примерами патобиоза могут служить процессы омертвления тканей при нейротрофических расстройствах в результате денервации тканей, вследствие длительной венозной гиперемии или ишемии. Некробиотические процессы протекают и в норме, являясь завершающим этапом жизненного цикла многих клеток. Большинство погибших клеток подвергаются аутолизу, т.е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

Специфические и неспецифические изменения при повреждении клеток . Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений.

Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, действие на любую клетку механических факторов сопровождается нарушением целостности ее мембран. Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфические для них изменения. Например, влияние различных патогенных факторов на мышечные клетки сопровождается развитием контрактуры миофибрилл, на нейроны - формированием так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение всегда сопровождается комплексом и неспецифических , стереотипных изменений в клетках. Они наблюдаются в различных видах клеток при действии на них разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтераций клеток относятся ацидоз, чрезмерная активация свободно-радикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, а также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств.

Механизмы компенсации при повреждении

Действие на клетку патогенных факторов и развитие повреждения сопровождается активацией или включением реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление клетки к изменившимся условиям ее жизнедеятельности. К числу основных приспособительных механизмов относят реакции компенсации, восстановления и замещения утраченных или поврежденных структур и нарушенных функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс таких реакций условно можно разделить на две группы: внутриклеточные и внеклеточные (межклеточные).

К числу основных внутриклеточных механизмов компенсации при повреждении можно отнести следующие.

Компенсация нарушений процесса энергетического обеспечения клеток . Одним из способов компенсации нарушений энергетического обмена вследствие поражения митохондрий является интенсификация процесса гликолиза. Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизация энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФ-аз), а также снижение функциональной активности клетки. Последнее способствует уменьшению расхода АТФ.

Защита мембран и ферментов клеток . Одним из механизмов защиты мембран и ферментов клеток является ограничение свободно-радикальных реакций и процессов перекисного окисления липидов ферментами антиоксидантной защиты (супероксиддисмутазой, каталазой, глютатионпероксидазой). Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности, ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и, как следствие, избыточной гидролитической активности лизосомальных энзимов. Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом, обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д.

Компенсация дисбаланса ионов и жидкости . Компенсация дисбаланса содержания ионов в клетке может быть достигнута путем активации механизмов энергетического обеспечения ионных «насосов», а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса имеет действие буферных систем. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимальных соотношений ионов К + , Na + и Са ++ . Снижение степени дисбаланса ионов в свою очередь, может сопровождаться нормализацией содержания внутриклеточной жидкости.

Устранение нарушений в генетической программе клеток . Повреждения участка ДНК могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обнаруживают и удаляют измененный участок ДНК (эндонуклеазы и рестриктазы), синтезируют нормальный фрагмент нуклеиновой кислоты взамен удаленного (ДНК-полимеразы) и встраивают этот вновь синтезированный фрагмент на место удаленного (лигазы). Помимо этих сложных ферментных систем репарации ДНК в клетке имеются энзимы, устраняющие «мелкомасштабные» биохимические изменения в геноме. К их числу относятся деметилазы, удаляющие метильные группы, лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излучения или свободных радикалов.

Компенсация расстройств внутриклеточных метаболических процессов, вызванных нарушением регуляторных функций клеток . Сюда относят: изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки, а также чувствительности рецепторов к этим веществам. Количество рецепторов может меняться благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависит характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов или их эффектов может быть скомпенсирован также на уровне вторых посредников - циклических нуклеотидов. Известно, что соотношение цАМФ и цГМФ изменяется не только в результате действия внеклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности, фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток . В результате снижения функциональной активности клеток обеспечивается уменьшение расходования энергии и субстратов, необходимых для осуществления пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обеспечивающих временное понижение функции клеток, можно отнести уменьшение эфферентной импульсации от нервных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций.

Приспособление клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие приспособительное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии, гипотрофии (см. раздел «Структурные основы компенсации»).

Регенерация (regeneratio - возрождение; восстановление) означает возмещение клеток и/или ее отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл - митохондрий, ядра, эндоплазматической сети и других вместо
поврежденных или погибших.

Гипертрофия (hyper - чрезмерно, увеличение; trophe - питаю) представляет собой увеличение объема и массы структурных элементов, в частности, клеток. Гипертрофия неповрежденных органелл клетки компенсирует нарушение или недостаточность функций ее поврежденных элементов.

Гиперплазия (hyper - чрезмерно; plaseo - образую) характеризуется увеличением числа структурных элементов, в частности, органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки.

Межклеточные (внеклеточные) механизмы взаимодействия и приспособления клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, физиологически активными веществами, ионами. В свою очередь взаимодействие клеток тканей и органов в организме в целом обеспечивается функционированием систем лимфо- и кровообращения, эндокринными, нервными и иммунными влияниями.

Характерной чертой межклеточных (внеклеточных) механизмов адаптации является то, что они реализуются, в основном, при участии клеток, которые не подвергались непосредственному действию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню и масштабу такие реакции при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные. Примером приспособительной реакции органно-тканевого уровня может служить активация функции неповрежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, и способствует уменьшению степени их повреждения. К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает и предотвращает (или уменьшает степень) повреждения их клеток.

Вовлечение в приспособительные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток (смотри раздел «Гипоксия»).

Активация внутриклеточных и межклеточных механизмов приспособления при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и/или защитно-приспособительные недостаточны, развивается необратимое повреждение клеток, и они погибают.

5. В медико-генетическую консультацию обратилась женщина 20 лет. Ее родная сестра больна тяжелой формой серповидно-клеточной анемии, у пациентки никаких заболеваний крови не было, супруг здоров. Женщину интересует, каков риск развития этой болезни у планируемого ребенка. При обследовании крови супругов на типы гемоглобина получены результаты: у мужчины HbA 98 %, HbS 1 %; у женщины HbA 70 %, HbS 29 %.
Каков ответ на вопрос женщины? Были ли основания для беспокойства? Возможна ли профилактика при планировании конкретного ребенка? Связано ли заболевание с полом ребенка?
6. Какие группы крови невозможны у детей от родителей со следующими группами крови по системе АВ0: I(0) и III(В)? III(В) и IV(АВ)? IV(АВ) и IV(АВ)? II(А) и III(В)? Какое значение при рождении второго ребенка имеет установленная группа крови первого?
7. В медико-генетическую консультацию обратилась беременная, которая сообщила, что ее сестра больна фенилкетонурией, сама наследственные заболевания отрицает. Супруг здоров. В его роду были браки между близкими родственниками, но случаев фенилкетонурии не отмечалось.
Какова вероятность появления фенилкетонурии у ребенка? Имеет ли значение вероятный пол ребенка? Можно ли лечить эту болезнь после ее появления?

Глава 4
ПАТОЛОГИЯ КЛЕТКИ

Клетка – структурная и функциональная единица всех живых организмов. В клетке сосредоточено уникальное свойство живого – способность размножаться, видоизменяться и реагировать на изменения окружающей среды. Эукариотическая клетка состоит из трех основных компонентов: плазматической мембраны, ядра, цитоплазмы. Главной функцией клетки является осуществление обмена со средой веществом, энергией и информацией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования (рис. 4.1 на с. 52).
Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки. С ними связаны дыхание и энергетические запасы (митохондрии), синтез белков (рибосомы, шероховатая эндоплазматическая сеть), накопление и транспорт липидов и гликогена, обезвреживание токсинов (гладкая эндоплазматическая сеть), синтез продуктов и их выделение из клетки (комплекс Гольджи), внутриклеточное пищеварение и защитная функция (лизосомы). Важно подчеркнуть, что функции субклеточных органелл не строго разграничены, поэтому они могут участвовать в разных внутриклеточных процессах.
Все перечисленное делает познание основ патологии клетки абсолютно необходимым для понимания закономерностей развития патологии на уровне тканей, органов и систем, болезни в целом – на уровне организма человека.

Рис. 4.1. Общее строение эукариотической клетки и ее основных органелл :
1 – секреторные гранулы (накопление продуктов секреции); 2 – центриоли (центр полимеризации микротрубочек); 3 – гладкая эндоплазматическая сеть (детоксикация и синтез стероидов); 4 – лизосомы (внутриклеточное переваривание); 5 – митохондрия (синтез АТФ и стероидов); 6 – сферические единицы (превращение энергии); 7 – липидные капельки (накопление); 8 – ядрышко (синтез рРНК); 9 – ядерная оболочка (разделение хроматина и цитоплазмы); 10 – шероховатая эндоплазматическая сеть (синтез и сегрегация белков, посттрансляционные изменения); 11 – комплекс Гольджи (конечные посттрансляционные изменения, упаковка и транспорт)

4.1. ПОВРЕЖДЕНИЕ КЛЕТКИ: ПРИЧИНЫ И ОБЩИЕ МЕХАНИЗМЫ

Повреждение – процесс, проявляющийся нарушением структурной и функциональной организации живой системы, вызванный различными причинами. В наиболее общем смысле повреждение на любом уровне представляет собой такое изменение структуры и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде. Повреждение является начальным моментом в развитии патологии, внутренней стороной взаимодействия причинного фактора с организмом. В этом смысле термины «этиологический фактор», «болезнетворный фактор» и «повреждающий фактор» являются синонимами.
Любое повреждение проявляется на различных уровнях:
молекулярном (повреждение клеточных рецепторов, молекул ферментов, нуклеиновых кислот вплоть до их дезинтеграции);
субклеточном – ультраструктурном (повреждение митохондрий, эндоплазматической сети, мембран и других ультраструктур вплоть до их деструкции);
клеточном (различные дистрофии из-за нарушения разных видов обмена с возможным развитием некроза по типу рексиса или лизиса клетки);
тканевом и органном (дистрофические изменения в большинстве клеток и строме с возможным развитием некроза (по типу инфаркта, секвестра и др.);
организменном (болезнь с возможным смертельным исходом).
Иногда дополнительно выделяют уровень тканевых комплексов, или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки паренхимы, соединительную ткань и терминальные нервные окончания. Морфологически повреждение может быть представлено двумя патологическими процессами: дистрофией и некрозом, которые нередко являются последовательными стадиями (рис. 4.2).
Причины повреждения клетки. Вовлечение клеток во все патологические процессы, происходящие в организме, объясняет и универсальность причин, вызывающих повреждение клеток, которые соответствуют по структуре классификации этиологических факторов болезни вообще (табл. 4.1).

Рис. 4.2. Обратимые и необратимые клеточные повреждения :
А – нормальная клетка: 1 – ядро; 2 – лизосома; 3 – эндоплазмолитическая сеть; 4 – митохондрии.
Б – обратимое повреждение: 1 – объединение внутримембранных частиц;
2 – разбухание эдоплазматической сети;
3 – дисперсия рибосом; 4 – разбухание митохондрий; 5 – уменьшение плотности митохондрий; 6 – самопереваривание лизосом; 7 – агрегация ядерного хроматина; 8 – выпячивание.
В – необратимые повреждения: 1 – миелиновые тельца; 2 – лизис эндоплазматической сети; 3 – дефект клеточной мембраны; 4 – большая разряженность митохондрий; 5 – пикноз ядра; 6 – разрыв лизосом и аутолиз

Причиной повреждения клетки может стать фактор как экзогенной, так и эндогенной природы. Применительно к клетке наиболее важные механические и физические агенты (механическая травма, колебания температуры окружающей среды и атмосферного давления, радиация, электрический ток, электромагнитные волны); химические агенты (изменение pH, снижение содержания кислорода, соли тяжелых металлов, органические растворители и др.); всевозможные инфекционные агенты; иммунные реакции, генетические нарушения, дисбаланс питания.

Таблица 4.1
Этиологические факторы повреждения клетки


Психогенные факторы повреждения для организма на уровне клеток воспринимаются через вторичные воздействия, которые являются физическими или химическими по своей природе. Например, при эмоциональном стрессе повреждение миокарда объясняется воздействием адреналина и изменением электрической активности симпатических волокон автономной нервной системы.

Общий патогенез клеточного повреждения. С точки зрения развития процессов в самой общей форме повреждения клетки могут проявляться нарушениями клеточного обмена веществ, развитием дистрофии, парабиоза и, наконец, некроза, когда клетка погибает.
Повреждения клетки могут быть обратимыми и необратимыми . Например, обратимым является повреждение лизосом в клетках эпителия кишечника под влиянием эндотоксина микроорганизмов кишечной группы. После прекращения интоксикации лизосомы в поврежденной клетке восстанавливаются. В случае повреждения клеток энтеровирусом повреждение выражается дегрануляцией лизосом, которую может вызвать, например, любая вирусная инфекция.
По своему течению повреждения могут быть острыми и хроническими . Функциональные проявления острого повреждения клетки делятся на преддепрессионную гиперактивность, парциальный некроз и тотальное повреждение (клеточный некроз).
Первое и наиболее общее неспецифическое выражение повреждения клетки при действии любого агента – это нарушение состояния неустойчивого равновесия клетки и среды, являющегося общей характеристикой всего живого, независимо от уровня его организации.
Преддепрессионная гиперактивность (по Ф. З. Меерсону) возникает вследствие обратимого повреждения клетки умеренными воздействиями патогенных факторов. В результате в мембране клетки происходят неспецифическое возбуждение и усиление деятельности органелл, в первую очередь митохондрий. Это приводит к усилению окисления субстратов и синтеза АТФ, сопровождается повышением резистентности клетки к патологическому фактору. Если воздействие этого фактора ограничено, может произойти ликвидация повреждения с последующим восстановлением первоначальной структуры и функции. Считают, что после такого воздействия в генетическом аппарате клетки сохраняется информация о происшедшем воздействии, так что в дальнейшем при повторном действии этого же фактора приспособление клетки значительно облегчается.
В случае парциального некроза поврежденная часть клетки отделяется от функционирующей части вновь образующейся мембраной и уничтожается фагоцитами. После этого структура и функция клетки восстанавливаются за счет гиперплазии субклеточных единиц.
Если повреждающий фактор имеет выраженную интенсивность и время действия, то происходит тотальное повреждение клетки, что приводит к прекращению функции митохондрий, нарушению клеточного транспорта и всех энергозависимых процессов. В дальнейшем происходит массивное разрушение лизосом, выход гидролитических ферментов в цитоплазму и расплавление остальных органелл, ядра и мембран. Фаза острого повреждения клетки, когда еще сохраняется небольшой градиент концентрации ионов между цитоплазмой и внеклеточной средой, называется агонией клетки. Она необратима и завершается некрозом клетки, при этом резкое увеличение проницаемости и частичное разрушение клеточных мембран способствуют доступу в клетку из окружающей среды ферментов, которые продолжают разрушение всех ее структурных элементов.

Специфическое и неспецифическое в повреждении клетки. Специфические повреждения можно усмотреть при анализе любого его вида. Например, при механической травме – это нарушение целостности структуры ткани, при аутоиммунной гемолитической анемии – изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, при радиационном повреждении – образование свободных радикалов с последующим нарушением окислительных процессов.
Неспецифическими повреждениями клетки, т. е. мало зависящими от вида повреждающего фактора, являются следующие:
нарушение неравновесного состояния клетки и внешней среды;
нарушение структуры и функции мембран: проницаемости и мембранного транспорта, мембранного электрического потенциала, рецепторного аппарата, формы клеток;
нарушение обмена и электролитного состава клетки и ее отдельных частей;
нарушение активности ферментных систем клетки (вплоть до ферментативного разрушения клетки);
уменьшение объема и интенсивности биологического окисления;
нарушение хранения и передачи генетической информации;
снижение специфической функции (для специализированных клеток).
Повреждение специфических функций, нужных для организма в целом, прямо не отражается на судьбе клеток, но определяет суть изменений в органах и системах, поэтому рассматривается в курсе частной патологии.
Большинство повреждений на субклеточном уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, воздействии адреналина, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток в виде набухания митохондрий и разрушения их мембран, вакуолизации эндоплазматической сети, очаговой деструкции миофибрилл и появления избыточного количества липидных включений. Такие идентичные изменения структур под влиянием различных факторов называются стереотипными.
При одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно проявляется весь спектр возможных состояний клетки от практически нормального и даже усиленно функционирующего до гибели (некроза). Это явление называется мозаичностью . Например, при действии вируса ветряной оспы на клетки кожи некрозы развиваются в виде мелких очагов, образуя характерную сыпь в виде пузырьков (везикул).
Повреждения на клеточном уровне иногда могут иметь специфический характер. Специфические изменения обусловлены внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных в виде включений.

4.2. ПАТОЛОГИЯ КЛЕТОЧНЫХ МЕМБРАН

Основной структурной частью мембраны является липидный бислой, состоящий из фосфолипидов и холестерина с включенными в него молекулами разных белков. Снаружи клеточная мембрана покрыта слоем гликопротеидов. К функциям мембраны клетки относятся избирательная проницаемость, реакции межклеточных взаимодействий, поглощение и выделение специфических веществ (рецепция и секреция). Плазматическая мембрана – место приложения физических, химических, механических раздражителей внешней среды и сигналов информационного характера из внутренней среды организма. Информационная функция обеспечивается рецепторами мембраны, защитная – самой мембраной, контактная – клеточными стыками (рис. 4.3).
Способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран может быть обусловлено деструкцией их липидных или белковых (ферментных и рецепторных) компонентов.
К патологии клетки могут вести нарушения следующих функций мембран: мембранного транспорта, проницаемости мембран, коммуникации клеток и их «узнавания», подвижности мембран и формы клеток, синтеза и обмена мембран (схема 4.1).

Рис. 4.3. Структура мембраны клетки (схема):
1 –двойной слой фосфолипидов; 2 – мембраные белки; 3 – полисахаридные цепи

Схема 4.1. Общие механизмы повреждения мембран клеток [Литвицкий П. Ф. , 1995]


Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов, активация мембранных фосфолипаз, осмотическое растяжение белковой основы мембран, повреждающее воздействие иммунных комплексов.
Мембранный транспорт предполагает перенос ионов и других субстратов против избытка (градиента) их концентрации. При этом нарушаются функция клеточных насосов и процессы регуляции обмена веществ между клеткой и окружающей ее средой.
Энергетической основой работы клеточных насосов являются процессы, зависящие от энергии АТФ. Эти ферменты «вмонтированы» в белковую часть клеточных мембран. В зависимости от вида проходящих по каналу ионов различают Na – K-АТФазу, Ca – Mg-АТФазу, Н – АТФазу и др. Особое значение имеет работа первого насоса, результатом которой является превышение концентрации К + внутри клетки приблизительно в 20–30 раз по сравнению с внеклеточной. Соответственно этому концентрация Na + внутри клетки приблизительно в 10 раз меньше, чем снаружи.
Повреждение Na – K-насоса вызывает освобождение К + из клетки и накопление в ней Na + , что характерно для гипоксии, инфекционных поражений, аллергии, снижения температуры тела и многих других патологических состояний. С транспортом Na + и К + тесно связан транспорт Ca 2+ . Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая проявляется прежде всего патологией митохондрий.
Известно участие Са 2+ в освобождении медиаторов аллергии из лабиринтов (тучных клеток). По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Ионы кальция, проникая в большом количестве внутрь клетки, способствуют освобождению гистамина и других медиаторов из гранул.
Морфологически нарушение проницаемости плазматической мембраны проявляется усиленным образованием ультрамикроскопических пузырьков, что приводит к дефициту поверхности или, напротив, увеличению поверхности за счет мембран микропиноцитозных пузырьков. В отдельных случаях выявляются утолщение и извитость участков мембраны, отделение части цитоплазмы, окруженной мембраной, от клетки. Это свидетельствует об активизации цитоплазматической мембраны. Другим наблюдаемым при электронной микроскопии признаком повреждения мембраны является образование крупных микропор – «брешей», что ведет к набуханию клетки, перерастяжению и разрыву клеточных мембран.
С формой и подвижностью мембраны непосредственно связаны изменения формы и подвижности клетки в целом, хотя при патологии обычно происходит упрощение формы клеточной поверхности (например, потеря микроворсинок энтероцитами).
Отдельного внимания заслуживает патология, развивающаяся при повреждении межклеточных взаимодействий. Поверхность мембраны клетки содержит множество рецепторов, воспринимающих различные раздражители. Рецепторы представлены сложными белками (гликопротеидами), способными свободно перемещаться как по поверхности клеточной мембраны, так и внутри ее. Механизм рецепции является энергозависимым, поскольку для передачи сигнала с поверхности внутрь клетки требуется АТФ. Особый интерес представляют рецепторы, одновременно являющиеся поверхностными антигенами-маркерами определенных типов клеток.
При разных патологических процессах (воспаление, регенерация, опухолевый рост) могут изменяться поверхностные антигены, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства. Например, повреждения гликолипидов мембраны делают ее более доступной воздействию антител.
Патология клеточной рецепции ведет к нарушению восприятия информации. Например, наследственное отсутствие апо-Е– и апо-В-рецепторов у клеток печени и жировой клетчатки ведет к развитию семейных типов ожирения и гиперлипопротеинемии. Аналогичные дефекты выявлены при некоторых формах сахарного диабета.
Межклеточное взаимодействие и кооперация клеток определяются состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях. Клеточные стыки выполняют три главные функции: межклеточную адгезию, «тесное общение» клеток и герметизацию слоя эпителиальных клеток. Межклеточная адгезия ослабевает при опухолевом росте уже на ранних этапах онкогенеза и является одним из критериев роста опухоли. «Тесное общение» заключается в прямом обмене клеток через щелевидные стыки информационными молекулами. Дефекты «тесного общения» играют значительную роль в поведении и возникновении злокачественных опухолей. Нарушения межмембранных связей клеток тканевых барьеров (кровь – мозг, кровь – легкие, кровь – желчь, кровь – почки) ведут к увеличению проницаемости плотных стыков клеток и повышенной проницаемости барьеров.

4.3. ПАТОЛОГИЯ КЛЕТОЧНОГО ЯДРА

Ядро обеспечивает координацию работы клетки в интерфазу, хранение генетической информации, передачу генетического материала при клеточном делении. В ядре происходят репликация ДНК и транскрипция РНК. При повреждении могут наблюдаться отек ядра, его сморщивание (пикноз), разрыв и разрушение (кариорексис и кариолизис). Ультрамикроскопическое исследование позволяет различить несколько типовых нарушений ядра и генетического аппарата клетки.
1. Изменение структуры и размеров ядра зависит от содержания в нем ДНК. В нормальном интерфазном ядре содержится диплоидный (2n) набор хромосом. Если после окончания синтеза ДНК не происходит митоза, появляется полиплоидия – кратное увеличение набора ДНК. Полиплоидия может встречаться в нормально функционирующих клетках печени, почек, в миокарде; она особенно ярко выражена в тканях при регенерации и опухолевом росте, причем чем более злокачественна опухоль, тем более выражена гетероплоидия. Анеуплоидия – изменение в виде неполного набора хромосом – связана с хромосомными мутациями. Ее проявления встречаются в большом количестве в злокачественных опухолях.
Вещество ДНК в ядре распределено неравномерно. В наружных отделах ядер находят конденсированный хроматин (гетерохроматин), который считается неактивным, а в остальных отделах – неконденсированный (эухроматин), активный. Конденсация хроматина в ядре рассматривается как признак метаболической депрессии и предвестник гибели клетки. К патологическим изменениям ядра относят также его токсическое набухание. Уменьшение размеров ядра характерно для снижении обмена веществ в клетке и сопутствует ее атрофии.
2. Изменение формы ядра может вызываться цитоплазматическими включениями (перстневидные клетки при слизьобразующем раке, ожиревшие гепатоциты), образованием множественных выпячиваний ядра в цитоплазму вследствие повышения синтетической активности ядра (полиморфизм ядер при воспалении, опухолевом росте). Как крайний вариант в ядре могут встречаться включения (цитоплазматические или вирусные).
3. Изменение количества ядер проявляется многоядерностью в гигантских клетках при воспалении (клетки Пирогова–Лангханса при туберкулезе), опухолях (клетки Штернберга–Березовского при лимфогранулематозе). Безъядерность может наблюдаться в нормальных клетках (эритроциты, тромбоциты), в жизнеспособных фрагментах опухолевых клеток и как свидетельство гибели клеток (кариолизис).
4. Изменение структуры и размеров ядрышек заключается в их увеличении и повышении плотности (соответствует повышению функциональной активности) или дезорганизации (встречается при энергодефиците в клетке и сопровождается патологией митозов).
5. Изменение ядерной оболочки (двойной мембраны) состоит в нарушениях связи ее с эндоплазматической сетью, выпячивании и искривлении обеих мембран, изменении количества и размеров пор, появлению включений в межмембранном пространстве. Данные изменения свидетельствуют о вовлеченности ядра в повреждение клетки и характерны для интоксикации, вирусных инфекций, радиационных повреждений, опухолевого перерождения клетки.
6. Процессы клеточного деления (митоза) могут нарушаться при различных воздействиях, при этом может страдать любое из его звеньев. Наибольшую известность получила классификация патологии митозов, предложенная И.А. Аловым (1972):
I тип – повреждение хромосом (задержка деления в профазе);
II тип – повреждение митотического аппарата (задержка в метафазе);
III тип – нарушение цитотомии (задержка в телофазе).
Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии, – вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.
Особенности реакции клетки на повреждающий фактор зависят как от его характеристики, так и от типа клетки по ее способности к делению, обеспечивающей возможность рекомпенсации. Считают, что в организме имеется три категории специализированных клеток по их способности к делению.
Клетки I категории с самого рождения организма достигают высокоспециализированного состояния структур за счет минимизации функций. В организме отсутствует источник возобновления этих клеток в случае их дисфункции. К таким клеткам относятся нейроны. Клетки I категории способны к внутриклеточной регенерации, в результате которой восстанавливаются утраченные части клеток, если сохранены ядерный аппарат и трофическое обеспечение.
Клетки II категории – это высокоспециализированные клетки, выполняющие какие-либо определенные функции и затем либо «изнашивающиеся», либо слущивающиеся с различных поверхностей, причем иногда очень быстро. Подобно клеткам I категории, они не способны размножаться, однако в организме имеется механизм для их непрерывного воспроизводства. Такие клеточные популяции называют обновляющимися, а состояние, в котором они находятся, – стационарным. К таким клеткам относятся, например, клетки, выстилающие большую часть кишечника.