Механические факторы неспецифической резистентности. Факторы неспецифической резистентности организма

АНТИТЕЛА (ИММУНОГЛОБУЛИНЫ) Антитела - это особый вид белков, называемых иммуноглобулинами (Ig), который вырабатывается под влиянием антигенов и обладает способностью специфически реагировать с ними. При этом антитела могут нейтрализовать токсины бактерий и вирусы (антитоксины и вируснейтрализующие антитела), осаждать растворимые антигены (преципитины), склеивать корпускулярные антигены (агглютинины), лизировать бактерии, другие клетки, например эритроциты (лизины), повышать фагоцитарную активность лейкоцитов (опсонины), связывать антигены, не вызывая каких-либо видимых реакций (блокирующие антитела). Структура антител. Электронно-микроскопические исследования показали, что молекула иммуноглобулина имеет форму буквы «игрек». Состоит она из четырех полипептидных цепей, связанных друг с другом дисульфидными мостиками (рис. 3). Две из них длинные и посередине изогнутые, как хоккейные клюшки, а две прямые и почти в 2 раза короче, прилегают снаружи к каждой длинной цепи. Молекулярная масса длинных цепей 50000-70000, коротких - 20000-25000. Ввиду этого длинные полипептидные цепи иммуноглобулина называют тяжелыми или Н-цепями (англ. heavy - тяжелый), а короткие - легкими или Ц-цепями (англ. light - легкий). Рис. 3. Строение иммувоглобулина G Обе цепи иммуноглобулина по порядку расположения в них аминокислот делятся на две части. Одна из них, С-область, у всех цепей иммуноглобулина независимо от их специфичности константна, т.е. имеет одинаковую последовательность аминокислот. Другая - V-область - представляет собой вариабельную часть полипептидных цепей, в которой последовательность расположения аминокислот меняется в зависимости от вида антигена, вызвавшего образование антитела. При этом на концах V-областей молекулы иммуноглобулина, между тяжелыми и легкими цепями, формируются два антигенсвязывающих центра, или как их сейчас называют по механизму взаимодействия с антигеном антидетерминантами или паратопами. Антигенсвязывающие центры иммуноглобулинов имеют зеркальную конфигурацию детерминантной группы того антигена, под воздействием которого вырабатывались. Вследствие этого распознавание антигена соответствующим антителом происходит не по химической структуре, а по общей конфигурации гаптена, благодаря взаимной комплементарности с антигенсвязывающим центром. Классы. В зависимости от строения константных областей тяжелых цепей все иммуноглобулины разделяют на пять классов: IgG, IgE, IgD, IgM и IgA (рис. 4). Рис. 4. Классы иммуноглобулинов Первые три класса иммуноглобулинов являются мономерами, т. е. бивалентными, содержащими два антигенсвязывающих центра: IgM - полимер, состоит из пяти мономерных молекул, связанных в области Fc-фрагментов особыми j -цепями. Валентность IgA различна. В сыворотке крови IgА, как и IgG, имеет мономерную структуру, а в секретах слизистых оболочек, межтканевой жидкости - в виде димеров (двух мономерных молeкул). Эти так называемые секреторные IgAS связаны особым полипептидом, который защищает димеры от воздействия протеолитических ферментов. Физико-химические свойства Ig. По физико-химическим свойствам иммуноглобулины G, Е, D и А представляют собой белки с молекулярной массой 150000-350000, обозначаемые по константе седиментации как 7S (IgG, IgE, IgD, IgА), 7,7-8,0 S (IgА), 9-12 S (IgАS). Макроиммуноглобулины М имеют молекулярную массу 900000 и константу седиментации 19 S. Биологические свойства Ig. Касаясь биологических свойств иммуно-глобулинов, нужно отметить, что содержание их в крови непостоянно и колеблется от 0,3-0,4 мг% (IgЕ) до 50-420 мг% (IgА и IgМ) и 800-1680 мг% (IgG). На первичное введение в организм антигена вырабатываются IgM. Отличаются они выраженной авидностью (жадностью), т. е., обладая 10 антигенсвязывающими центрами, образуют прочные соединения с антигенами, несущими множественные эпитопы, вызывают агглютинацию и лизис клеток, обеспечивают устойчивость к бактериальным инфекциям. Сохраняются IgМ, однако, недолго, и период их полувыведения не превышает 5 дней. При повторном попадании антигена происходит бурная выработка IgG, обеспечивающих нейтрализацию бактериальных токсинов и вирусов. Связываясь с микроорганизмами, IgG активируют образование комплемента, вызывают хемотаксис нейтрофилов. Микрофаги быстро поглощают бактерии, обработанные IgG и комплементом, так как имеют рецептoры к Fс-фрагменту иммуноглобулина и С3-фракции комплемента. IgG легко проникает через барьеры, в частности сквозь плаценту, попадая в кровь новорожденных. В последующем титр их пополняется при кормлении грудью, что обеспечивает иммунитет младенца в первые недели жизни. Период полувыведения IgG равен 24 дням. Иммуногло6улины А, АS, Е вырабатываются как на первичное, так на вторичное воздействие антигена. При этом сывороточные IgА накапливаются в крови. Секреторные IgАS продуцируются в слизистых оболочках кишечника, верхних дыхательных и мочевыводящих путей, содержатся в глазной жидкости, слюне, молоке и обеспечивают местный иммунитет тканей. Период полувыведения равен 6 дням. IgE - цитофильный иммуноглобулин, в частности связывается с тучными клетками и базофилами крови. При реагировании с антигенами (микробами, веществами) в результате образования на их поверхности иммунных комплексов высвобождаются медиаторы воспалительной реакции. Иммуноглобулин класса D находится на поверхности В-лимфоцитов вместе с мономерными IgМ составляет их рецепторы. Взаимодействие иммуноглобулинов с антигенами. IgG, IgM, IgА реагируют с детерминантами антигенов всеми имеющимися в их молекуле антигенсвязывающими центрами. Вследствие этого в растворах о6разуются крупные конгломераты веществ. Антитела, вызывающие видимые реакции, называют полными. В противоположность этому некоторая часть IgE и IgG реагирует с антигеном лишь одним активным центром, видимых реакций не дает и поэтому называется неполными антителами. Если реакция взаимодействия этих антител происходит в крови и не вызывает каких-либо нарушений в организме, их называют антителами-свидетелями. Последние блокируют антиген, а нередко одновременно связывают комплемент, вследствие чего называются блокирующими и комплементсвязывающими. Реагирование IgE с антигенами на поверхности клеток приводит к развитию аллергий. При незначительных, бесследно исчезающих проявлениях аллергии на кожных покровах антитела называют реагинами, а при ярко выраженных повреждениях клеток кожи- агрессинами или кожно-сенсибилизцрующими антителами. ПРОЦЕСС АНТИТЕЛООБРАЗОВАНИЯ Образование антител как иммунная реакция на антигены происходив в лимфоидной ткани периферических органов иммунитета, главным образом в лимфатических узлах и белой пульпе селезенки. Продуцентами антител являются плазмоциты. Общая иммунная реакция на антиген. Начинается синтез антител с захвата антигенов макрофагами и появления в корковой зоне лимфатических узлов центров размножения (вторичных фолликулов) с большим количеством митотически делящихся лимфоцитов и плазматических клеток. В первые сутки после введения антигена резко снижается выход лимфоцитов из лимфатических узлов, а в последующие 3-4 дня, наоборот, значительно возрастает и ведет к интенсивной миграции (расселению) стимулированных лимфоцитов через кровь во все лимфоидные ткани и органы. Фазы антителообразоваиия. В динамике образования антител различают две фазы - индуктивную (латентную) и продуктивную, или репродуктивную. Индуктивной фазой называют отрезок времени между введение антигена и появлением следов антител или первых плазмоцитов. В этой фазе происходит распознавание антигена. Он фагоцитируется (пиноцтируется) макрофагами или же связывается гастиоцитами. Если вслед за этим антиген полностью разрушается, то антитела не вырабатываются. Антителогенез происходит лишь при частичной деградации антигена. В таком случае в лимфоидной ткани, где происходит связывание антиген отмечаются массовая гибель и параллельно пролиферация клеток, появляется большое количество фагоцитов, увеличивается содержание в ней гистамина, гепарина, серотонина и других веществ, усиливающих воспаление. На фоне воспаления в конце индуктивной фазы начинается кооперация (взаимодействие) между макрофагами, на мембране которых находится измененный антиген, Т- и В-лимфоцитами, в результате чего молодые В-лимфоциты получают сигнал к пролиферации и дифференцируются в плазмоциты. Индуктивная фаза длится примерно 20 ч. Она очень лабильна. Начавшийся процесс антителообразования в этой фазе можно приостановить воздействием неблагоприятных для организма факторов. Наиболее легко это удается с помощью радиации, вследствие чего индуктивную фазу антителогенеза называют радиочувствительной. В продуктивной фазе происходит интенсивный синтез антител. остановить его нельзя даже облучением и поэтому продуктивную фазу можно назвать радиорезистентной. В этой фазе иммунного ответа кооперация иммунокомпетентных клеток, темп деления В-лимфоцитов резко усиливаются. В частности, на смену молодым клеткам типа плазмобластов (иммунобластов) в лимфоидной ткани появляются вначале юные, а затем зрелые плазматические клетки. При первичном иммунном ответе максимальное количество плазмоцитов в селезенке и лимфатических узлах появляется на седьмые сутки. Это совпадает с самым высоким титром антител в крови. Повторное введение чужеродного антигена сопровождается необычно интенсивным процессом антителообразования. При этом плазмоциты появляются через 48 ч, а максимальный титр антител - на 3-4-есутки. Это связано с наличием у иммунизированных индивидуумов специальных клеток иммунологической памяти, которые являются, по сути, юными плазмоцитами с незаконченным циклом трансформации. Естественно, что при повторном воздействии антигена они, проделав несколько делений, в считанные часы превращаются в зрелые плазмоциты. Продуктивная фаза антителообразования сравнительно непродолжительна. Применительно к одному клону она длится около 10 суток, но по отношению ко многим из них может увеличиться до нескольких недель, однако через 2-3 месяца титр антител в крови переболевших инфекционными заболеваниями резко снижается. Функциональные особенности плазмоцитов. Касаясь функциональных особенностей плазмоцитов, следует подчеркнуть, что они могут рассматриваться как своеобразные одноклеточные 6елковые железы. Как правило, плазмоциты образуют антитела одной иммунологической специфичности, например Н- или О-антитела к соответствующим жгутиковым и соматическим антигенам бактерий, Более того, при наличии в молекуле антигена двух разных детерминант плазмоцит вырабатывает антитела против одной из них. Только 0,01 % плазмоцитов продуцирует оба антитела. Первичный иммунологический ответ о6ычно начинается с синтеза IgМ. При вторичном ответе на антиген образуются микроглобулины IgG. Развитие клона плазмоцитов, начиная от плазмобласта до зрелой формы, занимает 5-6 суток. Жизненный цикл плазмоцитов, продуцирующих тот или иной вид антител, не превышает 48 ч. При этом вырабатывающиеся клоном плазмоцитов антитела представляют собой широкий спектр иммуноглобулинов, отличающихся по специфичности к различным детерминантам антигена. АЛЛЕРГИЯ (ГИПЕРЧУВСТВИТЕЛЬНОСТЬ) Под аллергией понимают неадекватный по силе иммунный ответ организма на определенное вещество-агент (аллерген), связанный с повышенной к нему чувствительностью (гиперчувствительностью). Аллергия специфична и возникает при повторном контакте с аллергеном, вызвавшим изменение иммунореактивности организма. Аллергия свойственна теплокровным животным и особенно человеку. Ее формирование в большей мере обусловлено способностью млекопитающих вырабатывать аллергические (анафилактические) IgЕ. Природа и классификация аллергенов. Аллергию вызывают многочисленные факторы окружающей среды, но чаще всего химические вещества, обладающие свойствами иммуногенов и гаптенов. По резервуару их образования все аллергены делят на экзоаллергены, попадающи извне, и эндоаллергены, образующиеся в самом организме. Экзоаллергены, с которыми контактирует человек, в свою очередь подразделяют на аллергены неинфекционного и инфекционного происхождения. Среди неинфекционных аллергенов различают бытовые, эпидермальные (перхоть, шерсть, волосы), лекарственные (пенициллин, сульфаниламиды и др.), промышленные (формалин, бензол), пищевые. Отдельно выделяют поллинозы, вызываемые цветочной пыльцой растений (лат: ро11еп - пыльца). Наиболее сильными сенсибилизирующими свойствами среди аллергенов инфекционного происхождения обладают аллергены патогенных грибков, бактерий и вирусов. Типы аллергических реакций. Аллергии - это иммунные гуморально-клеточные реакции сенсибилизированного организма на повторное воздействиё аллергенов. В настоящее время различают реакции гиперчувствительности немедленного типа (ГНТ) и реакции гиперчувствительности замедленного типа (ГЗТ). К ГНТ относят анафилактический шок, сывороточную болезнь, бронхиальную астму, сенную лихорадку, крапивницу, непереносимость к пищевым и лекарственным веществам. Столь же многочисленна группа реакций ГЗТ. К этой категории гиперчувствительности, в частности, относят инфекционную аллергию на бактерии, вирусы и грибы; аллергию на антибиотики и химические вещества; воспалительные реакции при отторжении трансплантата. Механизм и общая характеристика реакций ГНТ. В основе возникновения реакций ГНТ лежит процесс взаимодействия между IgE и аллергеном. При этом нужно иметь в виду, что молекулы IgЕ фиксированы на тучных и других клетках тканей, базофилах крови, а у сенсибилизированных лиц (особей) они в большом количестве обнаруживаются в крови. В развитии ГНТ различают три фазы: иммунологическую, патохимическую и патофизиологическую. В иммунологической фазе аллерген реагирует с цитофильными и свободноплавающими в крови и межтканевой жидкости антителами. В патохим.ической. фазе, наступающей вслед за образованием иммунных комплексов на внешних мембранах туч»ых клеток и базофилов, высвобождаются биологически активные вещества, которые повышают проницаемость капилляров и слизистых оболочек, способствуют всасыванию аллергенов и развитию 6ыстрой воспалительной реакции. Реагирование аллергенов со свободноплавающими IgЕ (по старой терминологии - с анафилаксинами) сопровождается 6ыстрsм связыванием комплемента, изменением коллоидного состава и свертываемости крови. В патофизиологической фазе при различных реакциях ГНТ отмечаются отек слизистых оболочек, покраснение и зуд кожных покровов (крапивница, сенная лихорадка), удушье в результате спазма гладкой мускулатуры бронхов (астма), припухлость и болезненность суставов (сывороточная болезнь), другие местные воспалительные реакции, а при резких нарушениях деятельности сердечно-сосудистой системы -внезапно возникающий анафилактичесуий шок. Реакции ГНТ проявляются в ближайшие 15 -20 мин после воздействия специфического аллергена; вызываются аллергенами антигенной и неантигенной природы; являются следствием взаимодействия аллергенов с аллергическими антителами. Реакции передаются пассивным путем, посредством введения сывороток сенсибилизированных животных. В 6ольшинстве случаев состояние гиперчувствительности к аллергену можно легко снять путем десенси6илизации. Механизм и общая характеристика реакций ГЗТ. Реакции ГЗТ обусловлены взаимодействием Т-лимфоцитов с соответствующим аллергеном. В развитии ГЗТ выделяют те же три фазы реакции. В иммунологической фазе аллерген реагирует с неиммунными лимфоцитами, которые в результате бласттрансформации превращаются в зрелые эффекторные тимоциты, способные узнавать «свой» аллерген. В патохимической фазе сенсибилизированные лимфоциты выделяют лимфотоксины , факторы, которые обусловливают хемотаксис и усиливают фагоцитоз, защищают фагоциты от повреждения и ингибируют миграцию макрофагов и др. Патофизиологическая фаза проявляется выраженной реакцией воспаления в разных тканях и органах. Реакции ГЗТ развиваются в течение многих часов или нескольких суток после контакта с аллергеном; вызываются после длительного воздействия инфекционных аллергенов и химических веществ; протекают в самых разнообразных тканях с явлением,альтерации (повреждения) клеток сенсибилизированными лимфоцитами; пассивная передача сыворотками сенсибилизированных животных невозможна и достигается введением взвеси Т-лимфоцитов; десенсибилизировать ГЗТ, как правило, не удается. В заключение следует подчеркнуть, что провести резкую грань между реакциями ГНТ и ГЗТ невозможно. Вначале, по-видимому, формируется ГЗТ как Т-клеточная реакция организма на аллерген, а после выработки иммуноглобулинов проявляется в виде ГНТ. Возможно, обе реакции развиваются параллельно и независимо одна от другой. В ответ на повторное воздействие аллергена у разных животных возникает то ГНТ, то ГЗТ либо обе реакции гиперчувствительности одновременно. ПАТОГЕНЕЗ И ХАРАКТЕР ПРОЯВЛЕНИЯ АНАФИЛАКСИИ И ИНФЕКЦИОННОЙ АЛЛЕРГИИ В возникновении различных типов аллергий ведущее значение принадлежит индивидуальной иммунной реактивности организма человека Однако есть аллергии, доминирующую роль в развитии которых играет характер аллергена. К ним относят анафилактический шок и инфекционную аллергию. Анафилаксия. Анафилаксия (греч. aha - обратное и jilakziz -действие или беззащитность) представляет собой реакцию гиперчувствительности немедленного типа, которая чаще всего возникает при повторном парентеральном введении чужеродной сыворотки или пенициллина. Виды анафилаксии. По признаку генерализации различают общую и местную анафилаксии, а по способу приобретения - активную и пассивную. Общая анафилаксия проявляется как системная реакция, нарушающая жизнедеятельность всего организма, а местная - как локальная, ограниченная определенным участком кожи, ткани, органа. Активная анафилаксия является следствием выработки антител под влиянием аллергена, а пассивная - результатом пассивной передачи иммунных сывороток (иммуноглобулинов) от сенсибилизированных до норов. Характеристика и проявление анафилактического шока. Самой тяжелой формой о6щей анафилаксии является анафилактический шок. Легче всего его вызвать у морских свинок, сенсибилизируя их лошадиной сывороткой. Вводят ее подкожно, внутрибрюшинно, внутривенно. Отмечено, что сенсибилизация животных происходит тем быстрее, чем меньше доза антигена. Эффективным является даже 0,000001 мл сыворотки. Готовность животных отвечать анафилактическим шоком возникает спустя 9-12 дней инкубации и совпадает с моментом появления антител в крови. Реализуется шок при соблюдении двух условий: 1) повторная или разрешающая доза сыворотки должна превышать сенсибилизирующую в 10-100 раз и быть не меньше 0,1 мл; 2) для развития шока разрешающую дозу антигена необходимо вводить в кровоток (внутривенно или внутрисердечно). У морской свинки при возникновении анафилактического шока вначале появляются возбуждение, одышка, затрудненное дыхание, далее, после конвульсивных прыжков, животное падает и погибает, выделяя кал и мочу. При вскрытии павших животных отмечаются резкая эмфизема легких вследствие спазма гладкой мускулатуры бронхов, кровоизлияния в слизистые и серозные оболочки. У человека при возникновении анафилактического шока учащается пульс, повышается температура, возникает одышка, появляются судороги, отеки, боли в суставах, высыпания, резко нарушается деятельность сердечно-сосудистой системы. Смерть анафилаксии наступает редко. В патогенезе анафилактического шока различают обычные для аллергической реакции ГНТ три стадии. Местная анафилаксия возникает в коже, подкожной клетчатке и в органах при многократных инъекциях чужеродной сыворотки. При этом развивается гиперергическое воспаление с резко выраженным отеком и квоизлиянием в ткани, заканчивающееся их некрозом. Впервые активный тип гиперергической реакции с образованием глу6оких незаживающих язв в коже и подкожной клетчатке описал Н. Артюс у кроликов, которым 5-7 раз через 5 - 6 дней подкожно вводили лошадиную сыворотку. Феномен Артюса сравнительно легко передается пассивно путем парентерального введения сыворотки сенсибилизированного донора с последующей подкожной инъекцией реципиенту разрешающей дозы сыворотки. В основе развития местной анафилаксии лежит альтерация клеток иммунными преципитатами, связывающими комплемент. Пассивная анафилаксия - это передача интактному животному состояния анафилаксии посредством введения сыворотки сенсибилизированного донора. Сенсибилизированный реципиент через несколько часов после фиксации в его тканях антител приобретает способность реагировать на введение соответствующего аллергена анафилактический шоком или местной анафилаксией. Пассивно переданная гиперчувствительность к аллергену сохраняется в организме морской свинки от 3-4 недель до 2 месяцев и полностью исчезает после разрушения введенных антител. Инфекционная аллергия. Развитие инфекционной аллергии и природу ее иммунологической сущности описал Р. Кох. Повторно заражая морскую свинку микобактериями туберкулеза, он обнаружил необычно бурную на них реакцию больного животного. На месте подкожного введения суперинфицирующей дозы в считанные дни возникала язва и вместе с некротической тканью удалялись бактерии туберкулеза, что предупреждало их, распространение в регионарные лимфатические узлы и через кровь - во внутренние органы свинки. Подобное состояние гиперчувствительности характерно для многих инфекционных заболеваний, но интенсивность проявления этой аллергической реакции не имеет столь яркого характера, как при туберкулезе. Этот тип ГЗТ выявляют с помощью диагностических проб, в которых используются аллергены. Готовятся они из фильтратов бульонных культур, взвесей убитых микроорганизмов или их экстрактов. Вводят аллергены в организм человека накожно или внутрикожно. Накожныё пробы проводят с помощью скарификатора, которым через каплю аллергена, нанесенную в нижней трети предплечья, делают две параллельные поверхностные насечки кожи длиной 5 мм, избегая повреждения сосудов и появления крови. Внутрикожно аллерген вводится туберкулиновым шприцем в количестве 0,05-0,1 мл. Следует подчеркнуть, что скарификационные пробы более специфичны, чем внутрикожные, но последние во стократ чувствительнее первых. При положительных реакциях на месте введения аллергена спустя 24 - 48 ч возникает инфильтрат, состоящий преимущественно из лимфоцитов моноцитов и макрофагов, что визуально проявляется покраснением и припухлостью диаметром более 10 мм. Оценивая аллергические пробы, нео6ходимо учитывать возможность получения ложноположительных реакций у людей с повышенной чувствительностью кожи или же из-за из6ыточного введения аллергена и нарушения техники их производства. Положительные, но не диагностические аллергические пробы могут регистрироваться у привитых лиц (поствакцинальные), переболевших (анамнестические) или же у больных другим инфекционным заболеванием, возбудитель которого имеет сходные групповые аллергены. В о6щем говоря, положительные аллергические пробы свидетельствуют об инфицированности людей. С учетом этих оговорок они нашли широкое применение в экспресс-диагностике туберкулеза и микобактериозов, лепры, бруцеллеза, туляремии, сапа, актиномикоза, токсоплазмоза, дерматомикозов и др. ИММУНОПРОФИЛАКТИКА И ИММУНОТЕРАПИЯ ВАКЦИНЫ Вакцины - это биологические препараты, предназначенные для создания у людей, животных и птиц иммунитета к инфекционным заболеваниям или реже - к ядам. Имеются корпускулярные и некорпускулярные вакцины. Корпускулярные вакцины содержат аттенуированные (осла6ленные) или убитые микро6ы, некорпускулярные - продукты их химического расщепления (химические вакцины), о6езврежениые экзотоксины бактерий или яды животного и растительного происхождения (анатоксины). По числу антигенов, входящих в вакцину, различают моно- и поливакцины (ассоциированные), по видовому составу – бактериальные, риккетсиозные, вирусные. Живые вакцины - это, как правило, моновакцины. Одни из них содержат ослабленные бактерии (бруцеллезная, туляремийная, чумная, сибироязвенная, туберкулезная вакцины), другие - вирусы (против натуральной оспы, желтой лихорадки, 6ешенства, полиомиелита, кори, эпидемического паротита). Живые вакцины наиболее иммуногенны и обычно создают напряженный и длительный иммунитет, вследствие того, что измененные штаммы (мутанты) сохраняют свойство размножаться (репродуцироваться) в привитом организме, вызывая миниатюрную вакцинную инфекцию, сжатую в сроках течения и сглаженную по тяжести проявления. Например, противооспенная и туляремийная вакцины обеспечивают устойчивость на протяжении 5-7 лет. Исключение составляет, пожалуй, только антигриппозная вакцина, создающая выраженный иммунитет на 6-8месяцев. К недостаткам живых вакцин относится то, что они очень, реактогенны (энцефалитогенны), обладают аллерргическими свойствами, за счет остаточной вирулентности могут вызывать серьезные осложнения, вплоть до генерализации вакцинного процесса и развития менингоэнцефалита. Убитые вакцины (брюшнотифозная, паратифозная А и В, дизентерийная, холерная, коклюшная, лептоспирозная, сыпнотифозная, против гриппа, полиомиелита, клещевого энцефалита) используются в виде моно- и поливакцин. Некоторые из них (лептоспирозная, антигриппозная), лючающие несколько разновидностей (сероваров) возбудителя, называются поливалентными. Убитые вакцины слабоиммуногенны и создают непродолжительнЬш иммунитет сроком до года, по-видимому, потому, что в процессе их изготовления происходит денатурация антигенов. Химцческие вакцины - это препараты, состоящие из полных антигенов микробных культур и очищенные от балластных веществ. Применяются для профилактики брюшного тифа, паратифов А и В (вакцина TABte со столбнячным анатоксином), коклюша, туберкулеза. Разрабатывается метод получения вакцин из протективных антигенов и рибосом. Реактогенность хорошо очищенных вакцин незначительна. По профилактической эффективности химические вакцины превосходят убитые корпускулярные. Анатоксины (столбнячный, дифтерийный, гангренозные, ботулинический, стафилококковый) относительно мало реактогенны, создают напряженный и длительный иммунитет до 4-5 лет и более. В настоящее время в арсенале средств борьбы с инфекционными (заболеваниями насчитывается около 30 вакцинальных препаратов против бактериальных, вирусных, риккетсиозных инфекций. Общая характеристика вакцин будущего. Синтетические вакцины - безбалластные вакцины, содержащие естественные или искусственно синтезированные микробные (вирусные) протективные антигены, не обладающие побочным токсическим действием. Для усиления иммунного ответа они конъюгируются со специально подобранными Т-зависимыми носителями и введены в адъюванты (иммуномодуляторы), которые стимулируют образование высоких титров антител. Рекомбинантные вакцины - искусственно созданные вакцины, содержащие рекомбинантные вирусы или микробы-химеры, в геномы которых введены гены других микробных видов, кодирующие один или несколько специфических антигенов. Таким путем, в частности, уже создан, рекомбинантный вирус оспенной вакцины, синтезирующий поверхностный HBs-антиген вируса гепатита В; кодирующий гемагглютинин вирус гриппа А; гликопротеины вирусов простого герпеса и везикулярного стоматита. Экспрессия HBs-антигена осуществлена также в дрожжевых клетках, отличающихся необычайно высокой иммуногенностью и полной безвредностью. Цели применения. Вакцины предназначаются для создания активного индивидуального и коллективного иммунитета. Чаще всего они используются для профилактики инфекционных заболеваний, реже для лечения (гонококковая, стафилококковая, спиртовая дизентерийная вакцины, Vi - антиген брюшнотифозной палочки, бруцеллезная вакцина). Способы изготовления. Для получения вакцин применяют физические, химические, биологические факторы. Живые вакцины обычно получают, пассируя патогенные микробы через организм невосприимчивых животных, куриный эмбрион, культуры клеток, добиваясь резкого снижения вирулентности. Убитые бактериальные вакцины гртовят по методу Колле, для чего микробы выращивают на плотных средах, смывают, стандартизируют, обезвреживают нагреванием (гретые вакцины) или воздействием химических соединений (формолвакцины, фенолвакцины, ацетоновые и т. п.). Анатоксины получают по методу Рамона, который для детоксикации бактериальных экзотоксинов предложил прибавлять к ним 0,3-0,8 % формалина с последующим выдерживанием на протяжении 3-4 недель при температуре 37-42 "С. Пути введения вакцин. Вакцины вводят в организм накожно, внутрикожно, подкожно, через рот и нос. В последние годы широкое распространение получил метод массовой вакцинации с помощью безыгольных, инъекторов. С той же целью разрабатывается аэрогенный способ одновременной аппликации вакцины на слизистые оболочки верхних дыхательных путей, глаз и носоглотки. Схема вакцинации. Живые вакцины, кроме полиомиелитной, применяются однократно, убитые корпускулярные, химические вакцины и анатоксиньг вводятся два-три раза с интервалами от 7-10 до 25-40 дней. Ввиду того что многократная вакцинация не обеспечивает высокого охвата населения прививками, применяются депо-вакцины. В качестве депонирующих веществ используют минеральные коллоиды, чаще всего гели гидроксида или фосфата алюминия, масла, которые как адсорбенты обеспечивают постепенное длительное воздействие антигенов на организм, а некоторые на них, например сложные адъюванты типа Фрейнда, неспецифически стимулируют антителогенез. Плановые прививки. Вакцинацию проводят в плановом порядке и по эпидемическим показаниям (при возникновении заболеваний). Проведение прививок регулируется государственными законами и является общественной мерой борьбы с инфекциями. В настоящее время принят четкая программа иммунизации детей. На первом году жизни ребенка прививают против туберкулеза (в роддоме на 5-7-й день), полиомиелита (в 3 мес.), коклюша, дифтерии и столбняка (в 4 - 5 мес.), а по достиженм года иммунизируют антикоревой вакциной. ИММУННЫЕ СЫВОРОТКИ (ГАММА-ГЛОБУЛИНЫ) Сывотортка – жидкая часть крови, лишенная фибриогена. Она образуется при свертывании крови и отделении плазмы от сгустка и форменных элементов. Классификация. Сыворотки бывают нормальные и иммунные с повышенным титром иммуноглобулинов; гомологичные, полученные от человека, и гетерологичные, или чужеродные, полученные от специально иммунизированныx животных. Иммунные сыворотки по целевому назначению подразделяют на лечебно-профилактические и диагностические, а по характеру содержащихся в них антител - на антитоксические и антимикробные. Диагностические сыворотки, как уже было сказано, используются для идентификации патогенных микробов. С помощью лечебно-профилактических сывороток создается пассивный иммунитет. Надобность в нем возникает при инфицировании (серопрофилактика) или заболевании (серотерапия). Антитоксические сыворотки нейтрализуют бактериальные экзотоксины и применяются для лечения и профилактики токсинемических инфекций. К ним относятся противодифтерийная, противостолбнячная, антистафилококковая, против анаэробной инфекции, противоботулиническая сыворотки. Антимикробные сыворотки обезвреживают бактерии и вирусы. Лучшими из них являются вируснейтрализующие сыворотки, в частности антикоревая, противооспенная, антирабическая, противоэнцефалитная, противополиомиелитная и противогриппозная. Лечебно-профилактическая эффективность антибактериальных сывороток низка, они используются главным образом для профилактикй коклюша и лечения чумы, сибирской язвы, лептоспироза. Титрование антитоксических лечебных сывороток. Антитоксические сыворотки титруются в антитоксических или международных единицах (AЕ или МЕ). За 1 АЕ принимают минимальное количество сыворотки, предохраняющее определенный вид животных от гибели при заражений специально подобранной дозой токсина. Так, 1 АЕ антидифтерийной сыворотки - это наименьшее количество сыворотки, которое на протяжении 4 суток предохраняет от смерти морскую свинку массой 250 г, инфицированную 100 ДLМ дифтерийного токсина. Антибактериальные и антивирусные сыворотки не титруются и вводятся по клиническим показаниям в миллилитрах. При определении их лечебной дозы учитываются тяжесть, день заболевания и возраст больного. Методы получения сыворотки. Лечебные и профилактические гетерологичные сыворотки получают путем иммунизации лошадей, поскольку эти животные более реактогенны, чем другие, и дают большой выход антител. Кроме того, лошадиный белок наименее анафилактогенен. Для получения антитоксических сывороток лошадей вначале иммунизируют анатоксином, а после создания базисного иммунитета - возрастающим дозами токсина. Антибактериальные сыворотки получают путем введения животным убитых или живых микробов. Нередко для лечения и профилактики инфекционных болезней используются гомологичные сыворотки здоровых доноров, пере6олевших людей или препараты плацентарной крови. Гамма-глобулины. В целях концентрации иммуногло6улинов, снижения токсичности и уменьшения аллергического действия сыворотки освобождают от балластных белков. При этом используют методы фракционирования сывороток с помощью спирто-водных смесей при температуре 0 "С, ультрацентрифугирования, электрофореза, ферментативного гидролиза (метод диаферм). Очищенные и концентрированные препараты гамма-глобулиновой фракции сывороточных 6елков, содержащие высокие титры антител, называют иммуноглобулинами, а в практике - гамма-глобулинами. В сравнении с нативной сывороткой они более авидны, быстрее реагируют и прочно связываются с антигеном. Применение гамма-гло6улинов снизило количество и тяжесть осложнений, возникающих при введении гетерологичных сывороток. Важно и то, что современная технология изготовления человеческого гамма-глобулина гарантирует полную ги6ель вирусов гепатита. Способы введения. Сыворотки и гамма-гло6улины вводят в организм различными путями: подкожно, внутримышечно, внутривенно или в спинномозговой канал. После введения иммунной сыворотки пассивный иммунитет возникает спустя несколько часов и продолжается 8-15 дней. . Специфическая десенсибилизация (гипосенсибилизация) анафилаксий. У сенсибилизированных чужеродной сывороткой животных анафилактическое состояние сохраняется в течение многих месяцев, а у человека - практически всю жизнь. В целях предупреждения анафилаксий у человека А. М. Безредка предложил вводить сыворотку небольшими дозами многократно, постепенно связывая анафилактические антитела Этот способ профилактики анафилактического шока называют специфической десенсибилизацией. Проводя ее, предварительно определяют чувствительность организма к белку. С этой целью в сгибательную поверхность предплечья внутрикожно вводят 0,1 мл чужеродной сыворотки разведенной 1:100. При отрицательной реакции, проявляющейся с образованием папулы диаметром 9 мм с небольшим ободком покраснения, через 20-30 мин поочередно вводят 0,1 мл и 0,2 мл цельной сыворотки, а спустя 1 -1,5 ч всю остальную дозу. При положительной внутрикожной пробе с инфильтратом более 10 мм десенсибилизация вначале проводится разведенной 1:100 сывороткой в дозах 0,5, 1,0, 2,0, 5 мл с интервалами в 20 мин, а затем с теми же промежутками 3 раза цельной - 0,1, 0,2, оставшийся объем. Состояние десенсибилизации непродолжитёльно и через 5-14 дней вновь появляется исходная гиперчувствительность. Гомологичные сыворотки (сыворотки человека) анафилактических реакций не вызывают. При нео6ходимости лечебную дозу этих сывороток вводят одновременно. Так, гамма-глобулин из сыворотки человек для профилактики кори вводят внутримышечно в количествё 1,5-З мл. , Для лечения и профилактики инфекционных заболеваний сыворотки и гамма-глобулины должны вводиться как можно раньше после заражения или заболевания. Например, противостолбнячную сыворотку следует использовать в первые 12 ч от момента ранения, а противодифтерийную - не позднее 2-4 ч после постановки диагноза. СЕРОЛОГОЧЕСКИЕ РЕАКЦИИ ИММУНИТЕТА Серологическими называют такие реакции, для постановки которых используют сыворотку (serum), содержащую антитела. Серологические реакции применяют: а) для идентификации микроорганизмов, токсинов, любого другого антигена с помощью известного антитела (иммунная диагностическая сыворотка); б) для определения природы антитела в сыворотке крови с помощью известного антигена (диагностикум). Основными серологическими реакциями являются реакции агглютинации, преципитации, связывания комплемента, иммунофлюоресценции, нейтрализации вирусов на культурах клеток, куриных эмбрионов и животных, реакция торможения гемагглютинации. Общие закономерности серологических реакций: 1) реакции ставятся in vitro; 2) проявляются при иммунологическом соответствии (гомологичности) антигена и антитела, в оптимальных температурных условиях и рН среды; 3) протекают в две фазы: а) взаимодействие антигена с антителом, или специфическая фаза; 6) образование видимого невооруженным глазом иммунного комплекса антитело-антиген, или неспецифическая фаза. Для определения родовой, видовой и типовой принадлежности микробов иммунные диагностические сыворотки получают путем многократного введения животным в нарастающих дозах убитых или живых микроорганизмов, продуктов их распада, токсинов и анатоксинов Иногда для активации антителообразования применяют адъюванты "как стимуляторы иммуногенеза. После определенного цикла иммунизации животных проводят пробное кровопускание и определяют титр антител. Если в сыворотке содержится достаточное количество антител, делают массивное кровопускание или тотальное обескровливание животного. Кровь, собранную в стерильную посуду, сначала помещают в термостат при температуре 37° С на 4-6 для ускорения свертывания, затем -на сутки в ледник. Полученную прозрачную сыворотку отсасывают в стерильную посуду, добавляют консерванты (мертиолат, хинозол), проверяют на стерильность и разливают в ампулы. К диагностическим сывороткам относятся: 1) агглютинирующие бактерии (корпускулы); 2) преципитирующие, предназначенные для выявления некорпускулярных антигенов; 3) гемолитическая, используемая в реакции связывания комплемента; 4) антитоксические и антивирусные, используемые для типирования токсинов и вирусов в реакции нейтрализации. Выпускают также люминесцентные сыворотки, иммуноглобулины которых метятся флюорохромами. Применяются они для ускоренной диагностики инфекционных болезней. В качестве антигенов в серологических реакциях используют взвеси живых и убитых бактерий, продукты их расщепления, токсины, экстракты тканей животных. РЕАКЦИЯ АГГЛЮТИНАЦИИ Агглютинацией называется склеивание бактерий при действии на нх специфических антител в присутствии электролита. Ее используют: 1) для определения вида и серовара выделенных бактерий (серотипаж); 2) для обнаружения антител в сыворотке крови больного (серодиагностика). Для постановки реакции агглютинации (РА) необходимы три компонента: антиген (агглютиноген), антитело (агглютинин) и электролит (изотонический раствор натрия хлорида). В качестве антигена в РА применяют взвеси живых и убитых бактерий (диагностикумы). Для получения агглютинирующих сывороток обычно иммунизируют кроликов. При этом им 5-7 раз подкожно, а затем внутривенно с интервалами 2-7 суток в возрастающих дозах вводят взвесь убитых, а в конце - 2-3 раза живых бактерий. Через неделю после иммунизации определяют титр сыворотки, или максимальное ее разведение, которое агглютинирует гомологичный микроорганизм. Если титр сыворотки недостаточен, иммунизацию продолжают. Полученные таким образом агглютинирующие сыворотки называются неадсорбированными, поскольку содержат групповые агглютинины и могут в небольших разведениях склеивать родственные в антигенном отношении бактерии. Поэтому для определения вида бактерий надо ставить развернутую реакцию с сывороткой, разведенной от 1:100 до ее титра. Сыворотка соответствует микроорганизму в том случае, если как минимум агглютинирует его до половины титра. Более достоверные результаты при определении вида или серовар бактерий дают адсорбированные (монорецепторные или типоспецифические) сыворотки , которые не имеют групповых агглютининов, вследствиечего нет необходимости разводить их. Реакцию агглютинации в нихставят на предметном стекле. Ориентировочная, или пластинчатая реакция агглютинации. Ориентировочную РА выполняют перед постановкой развернутой реакции для того, чтобы отобрать на среде агглютинирующиеся в сыворотке колонии бактерий (культуры) и исключить из дальнейших исследований неагглютинирующиеся. Ставят ее при комнатной температуре на предметном стекле (рис. 5, а). Для этого на его поверхность пастеровской пипеткой раздельно наносят 2-3 капли различных сывороток в разведениях 1:10-1:20 и каплю 0,5 % раствора хлорида натрия (контроль РА). В каждую каплю за исключением контрольной вносят подозрительные колонии (петлю культуры) и тщательно перемешивают до равн

1. Одним из определяющих факторов, участвующих в развитии ин­фекции и соответственно инфекционных заболеваний , является восприимчивый макроорганизм. Совокупность механизмов, опре­деляющих невосприимчивость (устойчивость) организма к дейст­вию любого микробного агента, обозначается термином "противомикробная (антимикробная) резистентность". Это одно из проявлений общей физиологической реактивности макроорга­низма, его реакции на своеобразный раздражитель - микроб­ный агент.

Противомикробная резистентность сугубо индивидуальна, ее уровень определяется генотипом организма, возрастом, усло­виями жизни и труда и т. д.

Повышению широкого комплекса факторов неспецифической защиты, в частности, способствуют ранее прикладывание к груди и грудное вскармливание.

По специфичности механизмы противомикробной зашиты делятся :

- на неспецифические - первый уровень защиты от микробных агентов;

-специфические - второй уровень защиты, обеспечиваемый им­мунной системой. Реализуется следующим образом:

Через антитела - гуморальный иммунитет; .

Через функцию клеток-эффекторов (Т-киллеров и макрофа­гов) - клеточный иммунитет.

Первый и второй уровни защиты тесно связаны между собой через макрофаги.

Неспецифические и специфические механизмы противомик­робной защиты могут быть тканевыми (связанными с клетка­ми) и гуморальными.

2.Неспецифическая микробная резистентность - это врожденное свойство макриорганизма, обеспечивается передаваемыми по на­следству достаточно многочисленными механизмами, которые делятся на следующие типы :

- тканевые;

Гуморальные;

Выделительные (функциональные).

К тканевым механизмам неспецифической естественной про­тивомикробной защиты относятся :

Барьерная функция кожи и слизистых оболочек;

Колонизационная резистентность, обеспечиваемая нормальной микрофлорой;

Воспаление и фагоцитоз (может также участвовать в специфи­ческой защите);

Барьерфиксирующая функция лимфоузлов;

Ареактивность клеток;

Функция естественных киллеров.

Первым барьером на пути проникновения микробов во внут­реннюю среду организма являются кожа и слизистые оболочки. Здоровая неповрежденная кожа и слизистые для большинства микроорганизмов непроницаемы. Однако некоторые виды воз­будителей инфекционных заболеваний способны проходить и через них. Такие возбудители получили название особо опас­ных, к ним относят возбудителей чумы, туляремии, сибирской язвы, некоторых микозов и вирусных инфекций. Работа с ни­ми проводится в специальных защитных костюмах и только в специально оборудованных лабораториях.

Помимо чисто механической функции, кожа и слизистые обо­лочки обладают антимикробным действием - нанесенные на кожу бактерии (например, кишечная палочка) довольно быст­ро погибают. Бактерииидность кожи и слизистых оболочек обеспечивают :

Ее нормальная микрофлора (функция колонизационной рези-стентности);

Секреты потовых (молочная кислота) и сальных (жирные ки­слоты) желез;

Лизоцим слюны, слезной жидкости и др.

Если возбудитель преодолевает кожно-слизистый барьер, то он попадает в подкожную клетчатку/подслизистый слой, где реа­лизуется один из основных неспецифических тканевых механизмов защиты - воспаление. В результате развития воспаления проис­ходит :

Отграничение очага размножения возбудителя от окружающих тканей;

Его задержка в месте внедрения;

Замедление размножения;

В конечном счете - его гибель и удаление из организма.

3. В ходе развития воспаления реализуется еще один универсаль­ный тканевой механизм неспецифической защиты - фагоцитоз.

Явление фагоцитоза было открыто и изучено великим русским ученым И. И. Мечниковым.

Итогом этих многолетних работ стала фагоцитарная теория иммунитета, за создание которой Мечников был удостоен Но­белевской премии.

Фагоцитарный механизм защиты слагается из нескольких по­следовательных фаз :

Узнавание;

Аттракция;

Поглощение;

Киллинг;

Внутриклеточное переваривание.

Фагоцитоз со всеми стадиями называется завершенным. Если фазы киллинга и внутриклеточного переваривания не на­ступают, то фагоцитоз становится незавершенным. При незавершенном фагоцитозе микроорганизмы сохраняются внутри лейкоцитов и вместе с ними разносятся по организму. Таким образом, незавершенный фагоцитоз вместо механизма защиты превращается в его противоположность, помогая мик­роорганизмам защищаться от воздействия макроорганизма и распространяться в нем.

Тканевые и гуморальные механизмы неспецифической резистентности

1. Барьерная функция лимфатических узлов

2. Прочие тканевые механизмы противомикробной защиты

3. Гуморальные механизмы неспецифической резистентности

1. Если микроорганизмы прорывают воспалительный барьер, т. е. воспаление как механизм неспецифической защиты не сраба­тывает, то возбудители попадают в лимфатические сосуды, а оттуда в региональные лимфатические узлы . Барьерфиксирующая функция лимфатических узлов реализуется следующим образом:

С одной стороны, региональные лимфатические узлы задержи­вают микроорганизмы чисто механически;

С другой - в них обеспечивается усиленный фагоцитоз.

2. К тканевым механизмам неспецифической противомикробной защиты относятся также ареактивность клеток и тканей и активность естественных киллеров (NK-клеток), которые проявляют свои свойства, если возбудитель, прорвав лимфатический барьер, попадает в кровь.

3. К гуморальным механизмам естественной неспецифической противомикробной защиты относятся содержащиеся в крови и других жидкостях организма ферментные системы :

Система комплемента (может также участвовать в специфиче­ской защите). Комплемент - это неспецифическая ферментная система крови, включающая 9 различных протеиновых фрак­ций, адсорбирующихся в процессе каскадного присоединения на комплексе антиген - антитело, и оказывающая лизирующее действие на связанные антителами клеточные антигены. Ком­племент нестабилен, он разрушается при нагревании, хране­нии, под действием солнечного света;

лизоцим - белок, содержащийся в крови, в слюне, слезной и тканевой жидкости. Он активен в отношении грамположи-тельных бактерий, так как нарушает синтез муреина в клеточ­ной стенке бактерий;

бета-лизины - более активны в отношении грамотрицательных бактерий;

лейкины - протеолитические ферменты, освобождающиеся при разрушении лейкоцитов. Они нарушают целостность поверх­ностных белков микробных клеток;

интерферон - продукт клеток, обладающий противовирусной и регуляторной активностью;

система пропердина - комплекс белков, обладающих противо­вирусной, антибактериальной активностью в присутствии со­лей магния;

эритрин.

К выделительным (функциональным) механизмам неспецифиче­ской естественной противомикробнои защиты относятся :

Чихание;

Выделительная функция почек и кишечника;

Лихорадка.

Защита от микроорганизмов - не основная функция этих ме­ханизмов, но их вклад в освобождение организма от них доста­точно высок.

Все многочисленные вышеперечисленные механизмы естест­венной неспецифической противомикробнои защиты активны всегда и в отношении любых микробных агентов: активность этих механизмов не становится более выраженной при повтор­ном или неоднократном контакте с микроорганизмами. Этим механизмы неспецифической противомикробнои защиты отличаются от механизмов специфической противомикробнои резистентности, входящих в иммунитет.

Неспецифическая резистентность осуществляется клеточными и гуморальными факторами, тесно взаимодействующими в достижении конечного эффекта - катаболизма чужеродной субстанции: макрофагами, нейтрофилами, комплементом и другими клетками и растворимыми факторами.
К гуморальным факторам неспецифической резистентности принадлежат лейкины - вещества, полученные из нейтрофилов, проявляющие бактерицидное действие в отношении ряда бактерий; эритрин - вещество, полученное из эритроцитов, бактерицидное в отношении дифтерийной палочки; лизоцим - фермент, продуцируемый моноцитами, макрофагами, лизирует бактерии; пропердин - белок, обеспечивающий бактерицидные, вируснейтрализующие свойства сыворотки крови; бетта-лизины - бактерицидные факторы сыворотки крови, выделяемые тромбоцитами.
Факторами неспецифической резистентности также являются кожа и слизистые оболочки организма - первая линия защиты, где вырабатываются вещества, оказывающие бактерицидное действие. Также подавляют рост и размножение микробов слюна, желудочный сок, пищеварительные ферменты.
В 1957 году английский вирусолог Айзекс и швейцарский вирусолог Лин-денманн, изучая явление взаимного подавления (интерференции) вирусов в куриных эмбрионах, опровергли связь процесса интерференции с конкуренцией между вирусами. Оказалось, что интерференция обусловлена формированием в клетках конкретного низкомолекулярного белкового вещества, которое удалось выделить в чистом виде. Ученые назвали этот белок интерфероном (ИФН), поскольку он подавлял репродукцию вирусов, создавая в клетках состояние резистентности к их последующему реинфицированию.
Интерферон образуется в клетках в ходе вирусной инфекции и обладает хорошо выраженной видовой специфичностью, то есть проявляет свое действие только в том организме, в клетках которого образовался.
При встрече организма с вирусной инфекцией именно продукция интерферона является наиболее быстрой ответной реакцией на заражение. Интерферон формирует защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, делает клетки непригодными для размножения вирусов.
В 1980 году Комитетом экспертов ВОЗ была принята и рекомендована новая классификация, согласно которой все интерфероны человека разделяются на три класса:
- альфа-интерферон (лейкоцитарный) - основной препарат для лечения вирусных и раковых заболеваний. Получают его в культуре лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не представляющие опасности для людей (вирус Сендай);
- бета-интерферон - фибробластный, продуцируется фибробластами, у этого типа интерферона противоопухолевая активность превалирует над противовирусной;
- гамма-интерферон - иммунный, вырабатывается сенсибилизированными лимфоцитами Т-типа при повторной встрече с "известным" им антигеном, а также при стимуляции лейкоцитов (лимфоцитов) митогенами - ФГА и другими лек-тинами. Обладает выраженным иммуномодулирующим действием.
Все интерфероны отличаются друг от друга по набору аминокислот и антигенным свойствам, а также по выраженности тех или иных форм биологической активности. Описаны следующие свойства интерферонов: антивирусные, имму-номодулирующие, противоопухолевые; помимо этого интерфероны подавляют рост клеток, изменяют проницаемость клеточных мембран, активируют макрофаги, усиливают цитотоксичность лимфоцитов, активируют последующий синтез интерферона, а также обладают "гормоноподобной" активацией жизнедеятельности клеток.
Во всех звеньях взаимодействия компонентов иммунной системы как на уровне образования, активации и проявления их функций остается много белых пятен для того, чтобы создать рабочую схему действия иммунной системы и на этой основе прогнозировать развитие дальнейших событий в организме.

Активные неспецифические механизмы поддержания антигенно-структурного гомеостаза вместе с пассивными являются первым рубежом обороны внутренней среды организма от чужеродных антигенов. Эти механизмы представлены сложным комплексом факторов - морфологических, биохимических, общефизиологических. Способность к их функционированию передастся по наследству от родителей, однако потенциальный максимум этих функций - показатель индивидуальный. Это и определяет неодинаковую степень у различных индивидуумов.

К неспецифической резистентности относят гуморальные и клеточные факторы защиты. Неспецифическая резистентность стереотипна. Она не дифференцирует антигены, имеет фазный характер, что связано с регуляцией ее со стороны нервной и эндокринной систем.

К гуморальным факторам относят: комплемент, интерфероны, лизоцим, бета-лизины и клеточные факторы: нейтрофильные лейкоциты (микрофаги).

Основным гуморальным фактором песпецифической резистентности является комплемент - сложный комплекс белков сыворотки крови (около 20), которые участвуют в уничтожении чужеродных антигенов, активации свертывания, образовании кининов. Для комплемента характерно формирование быстрого, многократно усиливающегося ответа на первичный сигнал за счет каскадного процесса. Активироваться комплемент может двумя путями: классическим и альтернативным. В первом случае активация происходит за счет присоединения к иммунному комплексу (антиген-антитело), а во втором - за счет присоединения к липополисахаридам клеточной стенки микроорганимов, а также эндотоксину. Независимо от путей активации происходит образование мембранатакующего комплекса белков комплемента, разрушающего антиген.

Вторым и не менее важным фактором, является интерферон . Он бывает альфа-лейкоцитарный, бета-фиброластный и гамма-интерферониммунный. Вырабатываются они соответственно лейкоцитами, фибробластами и лимфоцитами. Первые два вырабатываются постоянно, а гамма-интерферон - только в случае попадания вируса в организм.

Кроме комплемента и интерферонов, к гуморальным факторам относятся лизоцим и бета-лизины . Суть действия данных веществ заключается в том, что, являясь ферментами, они специфически разрушают липополисахаридные последовательности в составе клеточной стенки микроорганизмов. Отличие бета-лизинов от лизоцима заключается в том, что они вырабатываются в стрессорных ситуациях. Кроме указанных веществ, к этой группе относятся: С-реактивный белок, белки острой фазы, лактоферрин, пропердин и др.

Неспецифическая клеточная резистентность обеспечивается фагоцитами: макрофагами - моноцитами и микрофагами - нейтрофилами.

Для обеспечения фагоцитоза эти клетки наделены тремя свойствами:

  1. Хемотаксисом - направленным движением к объекту фагоцитоза;
  2. Адгезивностью - способностью фиксироваться на объекте фагоцитоза;
  3. Биоцидностью - способностью переваривать объект фагоцитоза.

Последнее свойство обеспечивается двумя механизмами - кислородзависимым и кислороднезависимым. Кисло-родзависимый механизм связан с активацией мембранных ферментов (НАД-оксидазы и др.) и выработкой биоцидных свободных радикалов, которые возникают из глюкозы и кислорода на специальном цитохроме В-245. Кислороднезависимый механизм связан с белками лизосом, закладывающихся в костном мозге. Только сочетание обоих механизмов обеспечивает полное переваривание объекта фагоцитоза.

Неспецифические факторы защиты - механические, физические и гуморальные факторы неспецифической резистентности организма.

Главными механическими барьерами зашиты являются кожа и слизистые оболочки. Здоровая кожа наряду с механической барьерной функцией обладает выраженными бактерицидными свойствами, обусловленными наличием нормальной микрофлоры на её поверхности. Определение степени бактерицидности кожи широко применяется в гигиенических и клинических исследованиях.

Неспецифические факторы защиты слизистых оболочек те же, что и у кожи, например кислая реакция (рН) желудочного сока (ниже 3), влагалища (4-4,5). Кроме того, клетки слизистых оболочек содержат лизоцим и секреторный иммуноглобулин класса А (SIgA), играющие важную роль в устойчивости кишечника, респираторных и мочеполовых путей к повреждающим агентам.

К механическим факторам относятся физиологические и патологические процессы, обеспечивающие удаление патогенных микроорганизмов, кашель, повышенное слизеотделение, чихание, рвота, потоотделение и др. Физическими фактором саногенеза, мобилизующим защитные реакции организма, является повышение температуры тела, наблюдаемое при многих заболеваниях.

Особое место среди неспецифических факторов защиты принадлежит фагоцитозу. К гуморальным неспецифическим факторам защиты относятся естественные антитела, комплемент, лизоцим, пропердин, бета-лизины, лейкины, интерферон, ингибиторы вирусов и другие вещества, постоянно присутствующие в сыворотке крови, секретах слизистых оболочек и тканях организма.

Значительную роль в обеспечении неспецифической резистентности организма играют также гормоны коры надпочечников (глюко- и минералокортикоиды).

Фагоцитоз - процесс поглощения, разрушения и выделения из организма патогенов.

В человеческом организме ответственными за него являются моноциты и нейтрофилы.

Процесс фагоцитоза бывает завершенным и незавершенным.

Завершенный фагоцито з состоит из следующих стадий:
активация фагоцитирующей клетки;
хемотаксис или движение к фагоцитируемому объекту;
прикрепление к данному объекту (адгезия);
поглощение этого объекта;
переваривание поглощенного объекта.

Незавершенный фагоцитоз прерывается на стадии поглощения, при этом патоген остается живым.

Стадии фагоцитоза

В процессе фагоцитоза образуются следующие структуры:

· фагосома – образуется после прикрепления фагоцита к объекту путем замыкания его мембраны вокруг патогена;

· фаголизосома – образуется в результате слияния фагосомы с лизосомой фагоцитирующей клетки. После ее образования начинается процесс переваривания.

Вещества из лизосомальных гранул (гидролитические ферменты, щелочная
фосфатаза, миелопероксидаза, лизоцим) могут разрушать чужеродные вещества двумя механизмами:

· кислороднезависимый механизм -осуществляется гидролитическими ферментами;

· кислородзависимый механизм - осуществляется при участии миелопероксидазы, перекиси водорода, супероксидного аниона, активного кислорода и гидроксильных радикалов.

Комплемент: краткое определение

Комплементом называют сложный комплекс белков, действующий совместно для удаления внеклеточных форм патогена; система активируется спонтанно определенными патогенами или комплексом антиген:антитело. Активированные белки либо непосредственно разрушают патоген (киллерное действие), либо обеспечивают лучшее их поглощение фагоцитами (опсонизирующее действие); либо выполняют функцию хемотаксических факторов, привлекая в зону проникновения патогена клетки воспаления.

Комплекс белков комплемента формирует каскадные системы, обнаруженные в плазме крови. Для этих систем характерно формирование быстрого, многократно усиленного ответа на первичный сигнал за счет каскадного процесса. В этом случае продукт одной реакции служит катализатором последующей, что в конечном итоге приводит к лизису клетки или микроорганизма.

Существует два главных пути (механизма) активации комплемента - классический и альтернативный.

Классический путь активации комплемента инициируется взаимодействием компонента комплемента С1q с иммунными комплексами (антителами, связанными с поверхностными антигенами бактериальной клетки); в результате последующего развития каскада реакций образуются белки с цитолитической (киллерной) активностью, опсонины, хемоаттрактанты. Такой механизм соединяет приобретенный иммунитет (антитела) с врожденным иммунитетом (комплемент).

Альтернативный путь активации комплемента инициируется взаимодействием компонента комплемента С3b с поверхностью бактериальной клетки; активация происходит без участия антител. Данный путь активации комплемента относится к факторам врожденного иммунитета.

В целом система комплемента относится к основным системам врожденного иммунитета, функция которых состоит в том, чтобы отличить "свое" от "не своего". Эта дифференциация в системе комплемента осуществляется благодаря присутствию на собственных клетках организма регуляторных молекул, подавляющих активацию комплемента.

Как было изложено ранее (см. главу 1), в состав функциональ­ного элемента входят микроциркуляторное русло, лимфатичес­кие сосуды, артериоловенулярные сосуды, сосудодвигатель-ные нервы, специфические клетки, а также тучные клетки, гистиоциты и ретикулярные клетки и волокна, образующие ретикулоэндотелиальную сеть. Ретикулоэндотелиальная сеть ха­рактерна для миелоидной и лимфоидной тканей. Ретикуляр­ные клетки способны фагоцитировать антигенные белки, но


лишены подвижности и поэтому называются фиксированными макрофагами. Ретикулоэндотелиальная сеть широко представ­лена в структурах глоточного лимфоидного кольца и вовле­кается в защитные реакции при ряде стоматологических за­болеваний.

Тучные клетки при воздействии повреждающего фактора вы­рабатывают физиологически активные вещества (гепарин, ги-стамин, серотонин, дофамин, ферменты) и выделяют их в периваскулярные пространства функционального элемента. Это приводит к изменению состояния микроциркуляторного рус­ла последнего и развитию первых этапов воспаления: кратков­ременному сужению сосудов с последующим их расширением и появлением гиперемии, повышению проницаемости сосуди­стой стенки, прилипанию ко внутренней стенке сосудов лей­коцитов и моноцитов, их выходу в периваскулярные простран­ства, что лежит в основе образования демаркационной зоны вокруг места повреждения.

Гистиоциты функционального элемента под влиянием по­вреждающих факторов превращаются в макрофаги, способные поглощать и разрушать антигены и микроорганизмы.

Описанные реакции наблюдаются при ряде стоматологичес­ких заболеваний, например при гингивитах, в начальных ста­диях которых отчетливо видна гиперемия десен в пришеечных областях зубов вследствие расширения приносящих сосудов микроциркуляторного русла. При отсутствии или недостаточ­ности лечения увеличивается и количество грамотрицательных бактерий и их эндотоксинов, прогрессируют изменения мик­роциркуляторного русла: усиливаются диапедез лейкоцитов и эритроцитов, экссудация плазмы в периваскулярные простран­ства, нарушается отток по лимфатическим сосудам функцио­нального элемента - возникает отек десен или слизистой обо­лочки рта, что наблюдается, например, при стоматитах раз­личной этиологии. Дальнейшее развитие заболевания связано с остановкой циркуляции крови в микрососудах, нарушением трофики, некрозом - возникает язвенный гингивит (язвенно-некротический стоматит Венсана).

Таким образом, на начальных этапах действия повреждаю­щих агентов к защите организма привлекаются факторы есте­ственной (неспецифической) резистентности, важнейшими элементами которой являются макрофаги (ретикулярные, туч­ные клетки и гистиоциты). Основным механизмом защиты на этой стадии является фагоцитоз.

Фагоцитоз - процесс, объединяющий различные клеточные реакции, направленные на распознавание объекта фагоцито­за, его поглощение, разрушение и удаление из организма. Основные стадии фагоцитоза:


Хемотаксис - движение фагоцита к объекту;

Аттракция - прилипание объекта к поверхности фагоци­та с постепенным погружением в клетку и образованием фагосомы;

Поглощение;

Ферментативное расщепление;

Переваривание.

Фагоцитоз может быть завершенным, когда объект ^практи­чески растворяется и остатки переваренного материала выбра­сываются из клетки, и незавершенным, когда размножающиеся микроорганизмы разрушают фагоцитирующую клетку. Контакт макрофагов с чужеродными веществами заканчивается фаго­цитозом или адгезией, если они превышают размер фагоцита. Фагоцитоз и адгезия обусловлены неспецифическими рецеп­торами на поверхности мембраны фагоцитов. Разнообразие рецепторов - основа чувствительности фагоцитов к многочис­ленным раздражителям и важный показатель их функциональ­ной зрелости и потенциальной активности. Рецепторы позво­ляют макрофагу прочно присоединиться к мишени, опсони-зировать ее (подготовить к фагоцитозу) с помощью иммуно­глобулинов и комплемента, фагоцитировать.

При образовании очага воспаления локомоторная функция фагоцитов имеет решающее значение. Локомоция может быть спонтанной (хемокинез) или вызванной химическим агентом (хемотаксис). Эндоцитоз и фагоцитоз сопровождаются парали­чом двигательной активности клеток.

Фагоциты являются мощными секреторными клетками. Они секретируют ферменты (нейтральные протеиназы, кислые гид­ролазы, лизоцим), ингибиторы ферментов, некоторые белки плазмы (компоненты комплемента, фибронектин), вещества, регулирующие функции и рост других клеток (интерферон, интерлейкин-1). Фагоциты при помощи медиаторной системы разрушают внеклеточные объекты, размер которых исключает возможность их поглощения. Фагоцитарной активностью обла­дают полинуклеарные и мононуклеарные лейкоциты.

Полинуклеарные лейкоциты (макрофаги) - в основном ней-трофилы. Они представляют собой высокодифференцированные короткоживущие клетки, попадающие в кровь из костного мозга после 2 нед созревания. В циркуляторном русле они об­мениваются каждые 5 ч. Попадая в ткани, нейтрофилы живут в них 2-5 сут, почти не меняясь морфологически. Нейтрофи­лы подвижны, отвечают на хемотаксические стимулы, содер­жат гранулы с ферментативной и бактерицидной активностью, фагоцитируют, но не в состоянии обеспечить иммуногенность антигена и индуцировать иммунный ответ. Содержат на повер­хности разнообразные рецепторы к широкому классу ве-


ществ - гистамину, простагландинам, кортикостероидам, им­муноглобулинам.

Первыми в очаг воспаления устремляются нейтрофилы, фор­мирующие демаркационный вал с участием медиаторов вос­паления и кининов. Сами нейтрофилы обладают цитотоксичес-кими свойствами и включаются в развитие воспалительного процесса, определяя в известной мере его дальнейшее тече­ние и исход. Затем в очаге воспаления накапливаются моно­нуклеарные фагоциты, принимающие участие в его санации, | ликвидации органических разрушений, восстановлении ткане­вого дефекта. Несостоятельность функции полинуклеарных фагоцитов и усиленный фагоцитоз распадающихся клеток мак­рофагами могут способствовать развитию гнойного воспаления, которое обычно вызывается стафилококками и стрептококка­ми, реже - синегнойной палочкой, обычно присутствующи­ми в полости рта. Гнойные формы воспаления кожи губ, крас­ной каймы губ, в углах рта, на слизистой оболочке полости рта - нередкое явление в стоматологической практике. В соот­ветствующих руководствах по стоматологии описаны призна-I ки, характер течения и методы лечения таких гнойных пато­логических процессов, как импетиго, заеда, фурункул, шанк-риформная пиодермия, абсцессы и флегмоны челюстно-лицевой области.


ют во всех тканях организма. Длительность их жизни - от не­скольких недель до нескольких месяцев. В функциональном отношении среди гетерогенных мононуклеарных макрофагов различают клетки-эффекторы, клетки-продуценты биологичес­ки активных веществ, добавочные клетки. Они продуцируют ин-терлейкин-1, компоненты комплемента, интерфероны, лизо-цим, активатор плазминогена, монокины, цитокин, проста-гландин Е, тромбоксан А, лейкотриены. Мононуклеарные фа­гоциты составляют одну из основных частей системы защиты организма от патогенных агентов - бактерий, грибов, простей­ших и других микроорганизмов. Они элиминируют мертвые и поврежденные клетки, органические и инертные частицы, секретируют биологически активные вещества. Макрофаги уча­ствуют в процессах воспаления, регенерации, репарации, фиб-рогенеза, выполняют секреторную, цитотоксическую, а также кооперативную и эффекторную функции в специфических иммунных реакциях. Первичная несостоятельность системы моноцитарных фагоцитов, разобщение ее функционирования с системой полиморфно-ядерных лейкоцитов приводят к раз­витию гранулематозного воспаления, как это иногда бывает при периодонтитах (кистогранулема).

Фибронектин - один из продуцентов макрофагов, высоко­молекулярный гликопротеид, выполняет опсонизирующую и адгезивную функции. Характеризуется высоким аффинитетом (сродством) к коллагену, фибрину, актину, гепарину. Опсо-низирует небактериальные частицы, увеличивает фагоцитарную активность звездчатых ретикулоэндотелиоцитов (купферовских клеток) при действии различных патогенных агентов.

Простагландины синтезируются макрофагами, клетками почек, эндокринных желез и других тканей. Основной меха­низм их действия - влияние на систему мембранных алени-латциклаз. Простагландины различных серий (Е, F, А) регу­лируют клеточный и гуморальный ответы. Они ингибируют активность Т-лимфоцитов, угнетают продукцию антител, миг­рацию макрофагов, взаимодействуют с лимфокинами. Проста­гландины, вероятно, играют роль медиаторов между макрофа-гальными фагоцитами и подвижностью клеток в очагах воспа­ления, т.е. являются иммунорегуляторами воспалительных про­цессов. Угнетение синтеза простагландинов приводит к увели­чению иммунного ответа. Наиболее существенная роль в регу­ляции последнего принадлежит простагландину Е. Макрофаги посредством медиаторов монокинов усиливают синтез колла­гена, пролиферацию фибробластов, эндотелия сосудов.

Интерферон повышает естественную резистентность организ­ма. Синтезируется в основном макрофагами, лимфоцитами и фибробластами при действии вирусов. Для нормальной продук­ции интерферона в организме необходимо полноценное фун-


кционирование Т-системы лимфоцитов; при этом антивирус­ный эффект в значительной степени связан с активацией Т-лимфоцитов, продуцирующих гамма-интерферон. Известны три типа интерферона: альфа-интерферон, получаемый из лей­коцитов донорской крови человека; бета-интерферон - из дип­лоидных клеток человека и гамма-интерферон, спонтанно про­дуцируемый и иммунный, получаемый путем воздействия ми-тогенов на Т-лимфоциты. Все типы интерферона оказывают антивирусный, иммуномодулирующий, антипролиферативный эффекты. Интерферон способен блокировать репликацию ДНК-и РНК-вирусов. Интерферон подавляет соединение вирусной РНК с рибосомами клетки. Иммуномодулирующее влияние интерферона связано с его способностью увеличивать фагоци­тоз, синтез антител, повышать цитотоксическую активность клеток, прежде всего естественных клеток-киллеров. Альфа-ин­терферон способен ингибировать клеточную пролиферацию, рост опухолевых клеток, угнетать образование антител. Стиму­лируют продукцию интерферона мефенаминовая кислота, ле- вамизол. Существенно снижают (подавляют) продукцию интер­ферона препараты, содержащие АКТГ. Продукция интерферо­на возрастает при вирусных поражениях органов полости рта: простом пузырьковом лишае (простой герпес), рецидивирую­щем герпесе, остром герпетическом стоматите, герпетической ангине, бородавках.

Свойство цитотоксичности и способность к образованию мно­гих цитокинов присуще также нестимулированным лимфоци­там - естественным клеткам-киллерам. Эти клетки действуют независимо от антигенной стимуляции, наличия антител и ком­племента. Они способны лизировать некоторые виды инфици­рованных вирусами опухолевых, аутологичных клеток, осуще­ствляя тем самым иммунный надзор; участвуют в регуляции дифференцировки, пролиферации и функциональной активно­сти В-лимфоцитов, процессах образования антител, синтезе иммуноглобулинов. Естественные клетки-киллеры обеспечивают первый уровень защиты до включения иммунных механизмов.

Пропердин - высокомолекулярный белок глобулиновой фракции сыворотки крови; рассматривается как нормальное антитело, образуемое в результате естественной скрытой им­мунизации различными веществами полисахаридной природы. Способен соединяться с полисахаридными структурами мик­робных клеток. В совокупности с другими гуморальными фак­торами пропердин обеспечивает бактерицидное, гемолитичес­кое, вируснейтрализующее свойства сыворотки крови, явля­ется медиатором иммунных реакций.

Система комплемента относится к важнейшим гуморальным эффекторным системам организма. Она состоит из 20 белков

К гуморальным факторам относят: комплемент, интерфероны, лизоцим, бета-лизины и клеточные факторы: нейтрофильные лейкоциты (микрофаги).

Основным гуморальным фактором неспецифической резистентности является комплемент - сложный комплекс белков сыворотки крови (около 20), которые участвуют в уничтожении чужеродных антигенов, активации свертывания, образовании кининов. Для комплемента характерно формирование быстрого, многократно усиливающегося ответа на первичный сигнал за счет каскадного процесса. Активироваться комплемент может двумя путями: классическим и альтернативным. В первом случае активация происходит за счет присоединения к иммунному комплексу (антиген-антитело), а во втором - за счет присоединения к липополисахаридам клеточной стенки микроорганизмов, а также эндотоксину. Независимо от путей активации происходит образование мембранатакующего комплекса белков комплемента, разрушающего антиген.

Вторым и не менее важным фактором, является интерферон . Он бывает альфа-лейкоцитарный, бета-фиброластный и гамма-интерферониммунный. Вырабатываются они соответственно лейкоцитами, фибробластами и лимфоцитами. Первые два вырабатываются постоянно, а гамма-интерферон - только в случае попадания вируса в организм.

Кроме комплемента и интерферонов, к гуморальным факторам относятся лизоцим и бета-лизины . Суть действия данных веществ заключается в том, что, являясь ферментами, они специфически разрушают липополисахаридные последовательности в составе клеточной стенки микроорганизмов. Отличие бета-лизинов от лизоцима заключается в том, что они вырабатываются в стрессорных ситуациях. Кроме указанных веществ, к этой группе относятся: С-реактивный белок, белки острой фазы, лактоферрин, пропердин и др.

Неспецифическая клеточная резистентность обеспечивается фагоцитами: макрофагами - моноцитами и микрофагами - нейтрофилами.

Для обеспечения фагоцитоза эти клетки наделены тремя свойствами:

  • Хемотаксисом - направленным движением к объекту фагоцитоза;
  • Адгезивностью - способностью фиксироваться на объекте фагоцитоза;
  • Биоцидностью - способностью переваривать объект фагоцитоза.

Последнее свойство обеспечивается двумя механизмами – кислородзависимым и кислороднезависимым. Кислородзависимый механизм связан с активацией мембранных ферментов (НАД-оксидазы и др.) и выработкой биоцидных свободных радикалов, которые возникают из глюкозы и кислорода на специальном цитохроме В-245. Кислороднезависимый механизм связан с белками лизосом, закладывающихся в костном мозге. Только сочетание обоих механизмов обеспечивает полное переваривание объекта фагоцитоза.

Лизоцим– термостабильный белок, типа муколитического фермента. Содержится в слезах, слюне, перитонеальной жидкости, плазме и сыворотке крови, в лейкоцитах, материнском молоке и др. Продуцируется моноцитами и тканевыми макрофагами, вызывает лизис многих бактерий, неактивен в отношении вирусов.

Система комплимента –многокомпонентная само собирающаяся система белков сыворотки крови, которая играет важную роль в поддержании гомеостаза. Активируется в процессе самосборки, т.е. последовательного присоединения к образующемуся комплексу отдельных фракций. Продуцируются они в клетках печени, мононуклеарными фагоцитами и содержатся в сыворотке крови в неактивном состоянии.

Комплемент выполняет ряд функций:

  • цитолитическое и цитотоксическое действие клетки-«мишени»;
  • анафилотоксины участвуют в иммунопатологических реакциях;
  • эффективность фагоцитоза иммунных комплексов (через Fc-рецепторы);
  • фрагмент С3b способствует связыванию и захвату иммунных комплексов фагоцитами;
  • фрагменты С3b, С5а и Вb (хемоаттрактанты), участвуют в развитии воспаления.

Интерфероны – неспецифически защищают клетки МКÒ от вирусной инфекции (разные вирусы). В то же время обладает видовой специфичностью – интерферон человека, активен только в Ò человека. Также оказывает антипролиферативное (противоопухолевое), иммуномодулирующее действие.

В зависимости от происхождения, по первичной структуре и функциям их подразделяют на 3 класса:

  • Лейкоцитарный α–интерферон получают в культурах лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не опасные для людей (вирусы осповакцины и др.). Он проявляет выраженное противовирусное, а также антипролиферативное (противоопухолевое) действие.
  • Фибробластный β-интерферон получают в полуперевиваемых культурах диплоидных клеток человека, в основном –противоопухолевая активность.
  • Иммунный γ-интерферон получают в перевиваемых культурах лимфобластоидных клеток под действием митогенов Б! или Р! происхождения. Отличается менее выраженным антивирусным эффектом, но сильное иммуномодулирующее действие.

Механизм противовирусного действия интерферона :

Интерферон выходит из пораженной клетки и связывается со специфическими рецепторами (ганглиозидоподобные вещества) тех же или соседних клеток. Рецепторы подают сигнал для синтеза ферментов – протеинкиназы и эндонуклеазы. Ферменты активируются вирусными репликативными комплексами. При этом эндонуклеаза расщепляет вирусную иРНК, а протеинкиназа блокирует трансляцию вирусных белков Þ угнетение репродукции вирусов.

Интерферон не спасает уже пораженную клетку, но предохраняет соседние клетки от инфицирования.