Виды деформации. Виды деформаций: растяжение, сжатие, кручение, изгиб, сдвиг

Под внешним воздействием тела могут деформироваться.

Деформация - изменение формы и размеров тела. Причина деформации заключается в том, что различные части тела совершают неодинаковые перемещения при действии на тело внешних сил.

Деформации, которые полностью исчезают после прекращения действия силы, - упругие , которые не исчезают, - пластические .

При упругих деформациях происходит изменение расстояния между частицами тела. В недеформированном теле частицы находятся в определенных положениях равновесия (расстояния между выделенными частицами - см. рис. 1, б), в которых силы отталкивания и притяжения, действующие со стороны других частиц, равны. При изменении расстояния между частицами одна из этих сил начинает превышать другую. В результате возникает равнодействующая этих сил, стремящаяся вернуть частицу в прежнее положение равновесия. Равнодействующая сил, действующих на все частицы деформированного тела, и есть наблюдаемая на практике сила упругости. Таким образом, следствием упругой деформации является возникновение упругих сил.

При пластической деформации , как показали наблюдения, смещения частиц в кристалле имеют совсем другой характер, чем при упругой. При пластической деформации кристалла происходит соскальзывание слоев кристалла относительно друг друга (рис. 1, а, б). Это можно увидеть с помощью микроскопа: гладкая поверхность кристаллического стержня после пластической деформации становится шероховатой. Соскальзывание происходит вдоль слоев, в которых больше всего атомов (рис. 2).

При таких смещениях частиц тело оказывается деформированным, но на смещенные частицы при этом не действуют "возвращающие" силы, так как у каждого атома в его новом положении такие же соседи и в таком же числе, как и до смещения.

При расчете конструкций, машин, станков, тех или иных сооружений, при обработке различных материалов важно знать, как будет деформироваться та или иная деталь под действием нагрузки, при каких условиях ее деформация не будет влиять на работу машин в целом, при каких нагрузках наступает разрушение деталей и т.д.

Деформации могут быть очень сложными. Но их можно свести к двум видам: растяжению (сжатию) и сдвигу.

Линейная деформация возникает при приложении силы вдоль оси стержня, закрепленного с одного конца (рис. 3, а, б). При линейных деформациях слои тела остаются параллельными друг другу, но изменяются расстояния между ними. Линейную деформацию характеризуют абсолютным и относительным удлинением.

Абсолютное удлинение , где l - длина деформированного тела, - длина тела в недеформированном состоянии.

Относительное удлинение - отношение абсолютного удлинения к длине недеформированного тела.

На практике растяжение испытывают тросы подъемных кранов, канатных дорог, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются колонны, стены и фундаменты зданий и т.д.

Возникает под действием сил, приложенных к двум противоположным граням тела так, как показано на рисунке 4. Эти силы вызывают смещение слоев тела, параллельных направлению сил. Расстояние между слоями не изменяется. Любой прямоугольный параллелепипед, мысленно выделенный в теле, превращается в наклонный.

Мерой деформации сдвига является угол сдвига - угол наклона вертикальных граней (рис. 5).

Деформацию сдвига испытывают, например, заклепки и болты, соединяющие металлические конструкции. Сдвиг при больших углах приводит к разрушению тела - срезу. Срез происходит при работе ножниц, пилы и др.

Деформации изгиба подвергается балка, закрепленная с одного конца или закрепленная с двух концов, к середине которой подвешен груз (рис. 6). Деформация изгиба характеризуется стрелой прогиба h - смещением середины балки (или его конца). При изгибе выпуклые части тел испытывают растяжение, а вогнутые - сжатие, средние части тела практически не деформируются - нейтральный слой . Наличие среднего слоя практически не влияет на сопротивляемость тела изгибу, поэтому такие детали выгодно делать полыми (экономия материала и значительное снижение их массы). В современной технике широко используются полые балки, трубки. У человека кости тоже трубчатые.

Деформацию кручения можно наблюдать, если на стержень, один конец которого закреплен, действует пара сил (рис. 7), лежащих в плоскости, перпендикулярной оси стержня. При кручении отдельные слои тела остаются параллельными, но поворачиваются друг относительно друга на некоторый угол. Деформация кручения представляет собой неравномерный сдвиг. Деформации кручения возникают при завинчивании гаек, при работе валов машин.

С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.

Определение

Деформация - это процесс перемещения частиц и элементов тела относительно взаимного местоположения в теле. Проще говоря, это физическое изменение внешних форм какого-либо объекта. Есть следующие виды деформации:

  • сдвиг;
  • кручение;
  • изгиб;

Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:

е=(р 2 -р 1)/р 1,

где е - это простейшая элементарная деформация (увеличение или уменьшение длины тела); р 2 и р 1 - длина тела после и до деформации соответственно.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов - они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Сдвиг

Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:

где Х 12 - это абсолютный сдвиг слоёв тела (то есть расстояние, на которое сместился слой); В - это расстояние между закреплённым основанием и параллельным сдвинутым слоем.

Кручение

Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:

  1. Ф - угол закручивания цилиндрического стержня.
  2. Т - момент действия.
  3. Л - длина стержня.
  4. Г - момент инерции.
  5. Ж - модуль сдвига.

Формула выглядит так:

Ф=(Т*Л)/(Г*Ж).

Другая величина, требующая вычисления, это относительный угол закручивания:

Q=Ф/Л (значения берутся из предыдущей формулы).

Изгиб

Это вид деформации, возникающий при изменении положения и формы осей бруса. Он также подразделяется на два типа - косой и прямой. Прямой изгиб - это такой вид деформации, при котором действующая сила приходится прямо на ось рассматриваемого бруса, в любом другом случае речь идёт о косом изгибе.

Растяжение-сжатие

Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.

Растяжение (сжатие) происходит, если сила, воздействующая на объект, проходит через центр его массы. Если говорить о визуальном примере, то растяжение приводит к увеличению длины стержня (иногда к разрывам), а сжатие - к уменьшению длины и возникновению продольных изгибов. Напряжение, вызываемое таким видом деформации, прямо пропорционально силе, воздейсвующей на тело, и обратно пропорционально площади поперечного сечения бруса.

Закон Гука

Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:

где Ф - это приложенная сила; к - коэффициент упругости; Л - это изменение длины бруса.

Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:

где Е - это модуль Юнга; С - площадь поперечного сечения; Л - длина бруса.

Выводы

На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого

Представим себе прямолинейный стержень, зажатый одним концом в тисках. Если повесить на другой свободный его конец гирю, то стержень прогнется. В зависимости от величины гири, от сечения стержня и от величины его вылета величина прогиба стержня будет колебаться в значительных пределах. Изменение формы или размеров тела под действием приложенных к нему сил называется деформацией тела.

Если после прекращения действия силы форма тела восстановится, то такая деформация называетсяупругой деформацией.Если же после прекращения действия силы тело остается деформированным, то такая деформация называется остаточной деформацией или пластической деформацией.

Различают следующие виды деформаций.

Деформация растяжения и сжатия . Такую деформацию испытывает тело, к которому приложены силы вдоль его оси, как, например, стержень болта, затянутого гайкой, канат грузоподъемных механизмов и др.

Величина деформации при растяжении тем больше, чем больше величина прилагаемой силы и длина растягиваемого тела и чем меньше сечение его.

Деформация кручения . Примером тела, испытывающего деформацию кручения, может служить вал, на одном конце которого установлен ведущий шкив, а на другом- ведомый. Под действием двух вращающих моментов, направленных в разные стороны, вал закручивается на угол, величина которого зависит от величины крутящих моментов и от сечения вала.

Деформация изгиба . Деформацию изгиба испытывают разного рода балки, оси и другие детали, имеющие одну или несколько опор и нагруженные сосредоточенными или распределенными силами.

Плотность металла в результате пластической деформации изменяется весьма незначительно1. Это изменение не имеет практического значения при решении задач, связанных с напряжениями и деформациями, поэтому обычно принимают следующее условие: объем пластически деформируемого1 тела остается постоянным или у другими словами, объем тела до пластической деформации равен его объему после деформации.
Отсюда не следует, что объем тела в период самой пластической деформации при его нагрузке внешними силами равен его объему после снятия нагрузки. Пластическая деформация тела всегда сопровождается его упругой деформацией, зависимость которой от напряжений определяется законом Тука 2 112. Значит, размеры тела в конечный момент его нагружения отличаются от его размеров после снятия нагрузки.
Пусть дана обычная диаграмма растяжения снятая на испытательной машине. По оси ординат отложено усилие, по оси абсцисс - деформация. В какой-то момент при усилии, определяемом отрезком Оа, деформация выражается отрезком Ос. Если из точки А провести прямую, параллельную линии ОВ, где точка В соответствует пределу пропорциональности (упругости), то отрезок Ос на оси абсцисс, представляющий собой полную деформацию при нагруженном состоянии образца, разделится на две части. Часть (отрезок be) будет представлять собой упругую деформацию, а часть (Ob) - пластическую. После снятия нагрузки длина образца уменьшается на величину Щ но эта длина будет больше исходной на величину остаточной (пластической) деформации, определяемой отрезком. Понятно, что тангенсы УГЛОВ ВОс и Abe выражают собой модуль Юнга (Е). При горячей обработке давлением при значительной пластической деформации наличием упругой деформации можно пренебречь. Однако в некоторых случаях, например при холодной гибке, упругая деформация очень заметна. В практике это явление называют пружинением. При проектировании технологических процессов с этим необходимо считаться. Так, угол в штампе при гибке «вхолодную» приходится делать несколько отличающимся от требуемого угла изгиба, учитывая угол пружинения.



Основные величины характеризующие деформацию Уменьшение толщины заготовки при прокатке (в мм или см) называется линейным или абсолютным обжатием, т.е. (3.4) Отношение абсолютного обжатия к первоначальной толщине, выраженное в процентах, называется относительным обжатием, (характеризует деформацию по высоте) и является степенью деформации при прокатке (3.5) Разница между шириной полосы до и после прокатки (в мм или см) называется абсолютным расширением (3.6) А отношение абсолютного расширения до первичной ширины - относительным расширением (характеризует деформацию по ширине) (3.7) Отношение длины заготовки после прокатки L1 к длине перед прокаткой, характеризующий продольную деформацию, называется коэффициентом извлечения (3.8) Важнейшими параметрами, необходимыми при проектировании технологического процесса прокатки, является степень деформации u и коэффициент вытяжке m.

18.смещенный объем - условный объем металла, удалененного илиприбавленного в процессе деформации в одном из направлений формоизменения. Равен объему тела,умноженному на логарифмическую деформацию, и поэтому обладает признаком аддитивности. Используюттакже термины удельный смещенный объем, а также приближенный смещенный объем, определенный черезотносительные деформации. Величинами смещенного объема пользуются, в частности, при определенииработы деформации и расчете калибровок при прокатке.

20.схемы механических деформаций характеристика распредения напряжений и деформаций в процессе обработки металлов давлением. Понятие схемы механическихдеформаций - совокупность схем гавных напряжений и схем главных деформаций для рассматриваемогообъема ввел академик С. И. Губкин. Схемы механических деформаций изображают в виде сочетаний кубиков,из которых на одном стрелками указывается направление главных напряжений (схема главных напряжений), ана другом - направление главных деформаций (схема главныз деформаций). На рис. показаны возможныеварианты схемы механических деформаций по И. М. Павлову. Каждая из линейных схем напряжений (Л)может иметь только одну из схем деформаций (Д); каждая из трех плоских (П) и объемных (О) схемнапряженных состояний может сочетаться со всеми тремя схемами главных деформаций, поэтому общеечисло схем механических деформаций равно 23. Схемы механических деформаций позволяют сравниватьразные процессы пластического формоизменения и классифицировать их по этому показателю. Предложеныи другие схемы механических деформаций;

Схемы механических деформаций

ОПРЕДЕЛЕНИЕ

Деформацией называют внешнее механическое воздействие на тело, которое приводит к изменению его объема и (или) формы.

Деформация в твердом теле называется упругой, если она пропадает после того, как нагрузку с тела сняли. Если , то такая деформация считается малой. У большинства твердых тел при малых деформациях проявляются упругие свойства.

ОПРЕДЕЛЕНИЕ

Деформация называется пластической (остаточной) , если после снятия нагрузки она не исчезает или исчезает не полностью.

Одни и те же тела могут быть упругими и пластичными, это зависит от характера деформации. Так при увеличении нагрузки свыше некоторого предела упругие деформации могут переходить в пластические.

В твердых телах при деформации частицы, которые находятся узлах кристаллической решетки, смещаются из положений равновесия. Такому смещению мешают силы, с которыми взаимодействуют частицы твердого тела между собой. Если деформация является упругой, то в кристаллах атомы смещаются незначительно. При пластических деформациях смещения атомов могут быть в несколько раз больше, чем расстояния между ними. При этом нарушения всей кристаллической структуры тела нет. Только некоторые слои кристаллической решетки проскальзывают относительно друг друга. Кроме того, проскальзывание атомных слоев идет не одновременно по всему объему, а может начинаться только с некоторых частей тела.

Прочность и хрупкость

Рассмотрим стержень, который проявляет упругие свойства. Его удлинение будет пропорционально приложенной деформирующей силе. Выполняется закон Гука. Будем увеличивать силу, которая растягивает рассматриваемое тело. Стержень будет изменять свою длину необратимо, то есть упругая деформация перейдет в пластическую. Если теперь снять нагрузку стержень не восстановит полностью свою длину. При еще большем растяжении тело порвётся, то есть произойдет его разрушение.

Прочностью называют свойство твердого тела выдерживать воздействие внешних сил без разрушения. В том случае, если тела разрушаются при внешних воздействиях без стадии пластической деформации, то они называются хрупкими.

Пластические свойства металлов при увеличении температуры растут, что учитывают при их обработке. Именно поэтому перед тем как ковать или штамповать из них изделия металлы нагревают до высоких температур.

Предел упругости. Текучесть материала. Коэффициент запаса прочности

Малые деформации подчиняются закону Гука. Максимальное напряжение (), при котором еще можно считать, что закон Гука выполняется, называют пределом пропорциональности. Если нагрузку увеличивать и перейти предел пропорциональности, то зависимость между приложенной к телу деформирующей силой и удлинением становится нелинейной. Однако, даже при нелинейных деформациях после снятия нагрузки форма и размеры тела восстанавливаются почти полностью. При этом пределом упругости () называют максимальное напряжение, при котором еще остаточные деформации не являются существенными. Предел упругости больше, чем предел пропорциональности не более, чем на 0,33\%. Часто эти величины считают равными ().

Максимальное напряжение, которое выдерживает тело без разрушения называют пределом прочности (). Величина предела прочности зависит от свойств материала и способа его обработки.

Напряжения, которые составляют только часть предела прочности материала, называют допустимыми (). Величина (n), равная:

называется коэффициентом запаса прочности. Величину n выбирают в зависимости от качества материала, характера нагрузки, степени опасности разрушений и т.д. Обычно запас прочности устанавливается от 1,7 до 10. Выбирая запас прочности, определяют допустимое напряжение.

Примеры решения задач

ПРИМЕР 1

Задание Какой максимальной высоты можно построить стену из кирпича, если предел прочности принять равным n? Предел прочности на сжатие у кирпича считают равным . Плотность кирпича равна .
Решение Для решения задачи используем соотношение:

Из него получим допустимое напряжение:

Сила, которая деформирует стену - это сила тяжести. Максимальное напряжение испытывает основание стены, которое найдем как:

где масса стены может быть представлена как:

Подставим (1.4) в (1.3) и приравняем правые части полученного выражения и (1.2):

Из (1.5) выразим искомую высоту стены:

Ответ

ПРИМЕР 2

Задание Какую минимальную длину должна иметь металлическая проволока, если в вертикальном положении она рвется под действием силы тяжести? Предел прочности материала считайте равным , плотность материала .
Решение Сделаем рисунок.

Деформирующей (растягивающей) силой для проволоки служит сила тяжести. Для того чтобы проволока стала рваться должно выполняться условие:

Не вдаваясь в теоретические основы физики процессом деформации твердого тела можно назвать изменение его формы под действием внешней нагрузки. Любой твердый материал имеет кристаллическую структуру с определенным расположением атомов и частиц, в ходе приложения нагрузки происходит смещение отдельных элементов или целых слоев относительно, другими словами возникают дефекты материалов .

Виды деформации твердых тел

Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.

Схема растяжения образца

Деформация растяжения является одним из основных лабораторных исследований физических свойств материалов. В ходе приложения растягивающих напряжений определяются величины, при которых материал способен:

  1. воспринимать нагрузки с дальнейшим восстановлением первоначального состояния (упругая деформация)
  2. воспринимать нагрузки без восстановления первоначального состояния (пластическая деформация)
  3. разрушаться на пределе прочности

Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.

Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».


Схема сжатия образца

В качестве примера можно привести тот же прибор что и в деформации растяжения немного выше.

Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.

Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига - расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки - сидение.


Схема сдвига образца

Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.


Схема изгиба образца

Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.

Деформация кручения - вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.


Схема кручения образца

Пластическая и упругая деформация

В процессе деформации важное значение имеет величина межатомных связей, приложение нагрузки достаточной для их разыва приводит к необратимым последствиям (необратимая или пластическая деформация ). Если нагрузка не превысила допустимых значений, то тело может вернуться в исходное состояние (упругая деформация ). Простейший пример поведения предметов, подверженных пластической и упругой деформацией, можно проследить на падении с высоты резинового мяча и куска пластилина. Резиновый мяч обладает упругостью, поэтому при падении он сожмется, а после превращения энергии движения в тепловую и потенциальную, снова примет первоначальную форму. Пластилин обладает большой пластичностью, поэтому при ударе о поверхность оно необратимо утратит свою первоначальную форму.

За счет наличия деформационных способностей все известные материалы обладают набором полезных свойств - пластичностью, хрупкостью, упругостью, прочностью и другими. Исследование этих свойств достаточно важная задача, позволяющая выбрать или изготовить необходимый материал. Кроме того, само по себе наличие деформации и его детектирование часто бывает необходимо для задач приборостроения, для этого применяются специальные датчики называемые экстензометрами или по другому тензометрами.