Функции промежуточного мозга. Строение и функции промежуточного мозга

ВВЕДЕНИЕ

анатомия возрастной физиология

Анатомия - это наука изучающая строение отдельных органов, систем органов и организма в целом. Возрастная анатомия рассматривает процесс развития индивида-онтогенез - в течение всей его жизни: от рождения до момента смерти. Педагогическая эффективность воспитания и обучения находится в тесной зависимости от того, в какой мере учитывается анатомо-физиологические особенности детей и подростков, периоды развития, для которых характерна восприимчивость к воздействию тех или иных факторов, а также периоды повышенной чувствительности и пониженной сопротивляемости организма.

Важное значение, возрастная физиология имеет для понимания возрастных особенностей психологии ребенка. Объективное изучение функций мозга детей раннего возраста позволяет выявить механизмы, определяющие специфику осуществления психических и психофизиологических функций на ранних этапах развития детского организма, установить этапы, наиболее чувствительные к педагогическим воздействиям.

Актуальность тем: Зная физиологические и анатомические особенности организма школьника, учитель сможет правильно организовать учебный процесс.

Целью освоение дисциплины «анатомия и возрастная физиология» является формирование знаний о возрастных анатомо-физиологических особенностях строения и функционирования систем органов и организма в целом, детей различных возрастных групп, с целью применения полученных знаний в педагогической деятельности.

· Изучить строение промежуточного мозга, выявить его функции;

· Выявить роль печени и поджелудочной железы в пищеварении;

· Узнать что такое торможение центральной нервной системы, какую роль оно играет для организма;

· Изучить анатомию и физиологию вегетативной нервной системы, выявить ее возрастные особенности;

· Изучить состав крови и физико-химические свойства плазмы.

Строение и функции промежуточного мозга

Промежуточный мозг расположен впереди среднего мозга и сильно прикрыт полушариями большого мозга. Подразделяется промежуточный мозг на (ПРИЛОЖЕНИЕ 1):

· Таламический мозг (лат. thalamencephalon)

· Подталамическую область или гипоталамус (лат. hypothalamus)

· Третий желудочек, который является полостью промежуточного мозга

Наиболее крупным отделом промежуточного мозга (diencephalon) является парный таламус (thalamus), который также называется зрительным бугром. Таламус имеет овоидную форму, свободные медиальную и верхнюю поверхности, а латерально-нижней поверхностью он сообщается с другими отделами мозга. Серое вещество таламуса образовано ядрами, из которых переднее связано с обонятельным анализатором, заднее -- со зрительным, а через латеральное ядро к коре головного мозга направляются все чувствительные проводники.

В верхнезадней части таламуса располагается надталамическая область, которая также называется эпиталамусом (epitalamus). Эпиталамус образует шишковидное тело, которое посредством поводков крепится к таламусу. Шишковидное тело (corpus pineale) представляет собой железу внутренней секреции, которая отвечает за синхронизацию биоритмов организма с ритмами окружающей среды.

Позади таламуса располагаются медиальные коленчатые тела, являющиеся подкорковыми центрами слуха, латеральные коленчатые тела, представляющие собой подкорковые центры зрения, а также заталамическая область, относящаяся к метаталамусу. Под таламусом располагается так называемый гипоталамус. Эта область включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест (chiasma opticum), II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы.

Структуры гипоталамуса ограничивают нижнюю часть полости промежуточного мозга, которая представляет собой щель между медиальными поверхностями таламуса и называется III желудочком (ventriculus tertius).

Спереди III желудочек ограничивается столбами свода, а сверху покрывается сосудистой оболочкой, которая через расположенное у переднего конца таламуса межжелудочковое отверстие проникает в боковые желудочки, являющиеся полостью конечного мозга, обеспечивая связь между боковыми желудочками и III желудочком.

Все эти отделы, кроме мозжечка, сообщаются с периферией при помощи черепных нервов и имеют общее название мозгового ствола (truncus cerebri). В мозговом стволе на всем его протяжении содержатся нейроны ретикулярной формации, которые имеют слабо ветвящиеся дендриты и сильно ветвящиеся аксоны, идущие в различных направлениях. Благодаря ретикулярной формации достигается необходимый уровень активности клеток коры полушарий большого мозга.

Гипоталмус - содержит ядра и ядерные области. Имеющие многочисленные связи с разными структурами, что позволяет гипоталмусу контролировать разнообразные функции.

· Афферентные и эфферентные связи. Гипоталамус соединен со многими отделами ЦНС, в том числе с другими частями лимбической системы, структурами среднего мозга, моста и продолговатого мозга (и через них - с периферическими отделами вегетативной нервной системы). Влияния направленны к различным областям промежуточного мозга и больших полушарий, особенно к переднему таламусу и лимбической коре. Так же гипоталамус контролирует контролирует эндокринные функции гипофиза.

· Связь с гипофизом осуществляется: при помощи гипоталамо-гипофизарного тракта (нервный путь) и по сосудам портальной системы кровотока (гуморальный путь).

Функции гипоталамуса.

Гипоталамус конролирует множество висцеральных (в том числе эндокринных) и поведенческих функций.

· Висцеральные функции гипоталамуса: заднее ядро гипоталамуса ответственно за повышение артериального давления и расширения зрачков; вентромедиальное ядро контролирует насыщение; предсосцевидные ядра - голод; сосцевидное тело - пищеварительные рефлексы; дугообразное ядро осуществляет нейроэндокринный контроль; надперекрестное ядро ответственно за сокращение мочевого пузыря, снижение частоты сердечных сокращений, уменьшение артериального давления; супроаптическое ядро синтезирует вазопрессин. Предзрительное поле отвечает за регуляцию температуры тела. Отдышку, потоотделение, а также тормозит выделение тиреотропного гармона; паравентрикулярное ядро синтезирует окситоцин и регестрирует задержку воды в организме.

· Поведенческие функции гипоталамуса: участие гипоталамуса в поведенческих функциях установленно эксперементально (эффекты стимуляции и повреждения):

o Эффекты стимуляции гипоталамуса:

§ Латеральный гипоталамус: жажда, апетит, увеличение активности организма, ярость, агрессия.

§ Вентромедиальное ядро и окружающие его области: чувство насыщения, снижения аппетита, возникает успокоение.

§ Привентикулярные ядра: страх и боязнь наказания.

§ Некоторые области переднего и заднего гипоталамуса: усиленный поиск полового партнера.

o Эффекты разрушения гипоталамуса противоположны эффектам его стимуляции.

§ Латеральный гипоталамус: потеря жажды и апетита, пассивность и малоподвижность.

§ Вентромедиальное ядро и окружающие его области: неукротимый аппетит и жажда, жестокость и ярость.

o Центры поощерения и наказания. Личные оценки характеризуют ощущения как приятные или неприятные. Электрическая стимуляция некоторых лимбических зон доставляет удовольствие; раздражение других - боль, страх, защиту, реакции нападения или избегания.

o Роль поощрения и наказания в поведении, обучении и памяти. Почти все что делает человек, имеет отношение к поощрению или наказанию. Центры поощрения и наказания являются одними из наиболее важных контролеров нашей физической активности, побуждений, антипатий мотиваций. Центры влияют на отбор получаемой информации: обычно 99% информации удаляется и для закрепления в памяти остается не более 1 %.

o Привыкание. Новые сенсорные стимулы почти всегда возбуждают значительные области коры больших полушарий. Повторение этих же стимулов приводит к почти полному затуханию корковых ответов (если сенсорное научение не вызывает чувства поощрения).

Гипоталамус содержит биологические часы. Большинство гомеостатически регулируемых функций организма в течение суток сопровождается подъемами и снижением активности, которые называются циркадианными ритмами. Они запускаются в организме надперекрестным ядром гипоталамуса, выполняющим функцию биологических часов мозга. Нейроны ядра наделены свойством спонтанного осциллятора, генерирующего свои разряды в определенные часы дня и ночи. Циркадиальные ритмы активности поддерживаются клетками ядра. Молекулярной основой клеточного ритма являются серии транскрипционных петель обратной связи. Гены, вовлеченные в эти петли, по всей видимости передались от прокариотов человеку. Световые сигналы из внешнего мира, влияющие не надперекрестное ядро, поступают по афферентному ретиногипоталамическому тракту зрительного нерва. По этому пути световые сигналы из внешнего мира передают ритмы дня/ночи внутренним часам мозга, подстраивая, таким образом, эндогенный осциллятор к наружному времени.

Гипоталамус - посредник между эндокринной, вегетативной и лимбической системами.

Гипоталамус состоит из анатомически различных ядер. Эти ядра являются центрами физиологической регуляции метаболизма и пищевого поведения, контролируют гонады и сексуальную активность, осуществляют нейроэндокринный контроль над многими вегетативными функциями, играют роль биологических часов.

Таламус. Подразделяют на эпиталамус, дорсальный и вентральный таламус. Эпиталамус имеет связь с обонятельной системой и функционирует самостоятельно. Дорсальный таламус содержит неспецифические проекционные ядра, которые проецируются на вся кору, и ядра, проецирующийся на специфические участки коры и лимбической системы. Неспецифические проекционные ядра получают информацию из ретикулярной активирующей системы. Активация неспецифических ядер вызывает диффузный электрический ответ в коре, регистрируемый на электроэнцефалограмме. Специфические проекционные ядра проецируют свои влияния на специфические участки коры. Эти ядра подразделяются неспецифические сенсорные и релейные, отвечающие за контроль эфферентных механизмов и имеющих отношение к комплексу интегративных функций. Таламус передает информацию от огранов чувств к головному мозгу, посылает инструкции от головного мозга к мышцам тела.

Функционально в нем выделяют 2 отдела: таламус и гипоталамус.

В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходят сигналы от зрительных, слуховых, вкусовых, кожных, мышечных, висцеральных рецепторов, а также ядер ствола мозга, мозжечка, подкорковых. Сам он содержит около 120 ядер. Они делятся на неспецифические и специфические. Неспецифические относятся к переднему отделу ретикулярной формации ствола мозга. Их аксоны нейронов поднимаются к коре и диффузно пронизывают все ее слои. К этим ядрам подходят нервные волокна от нижележащих отделов РФ, гипоталамуса, лимбической системы, базальных ядер. При возбуждении неспецифических ядер в коре мозга развивается периодическая электрическая активность в виде веретен, что свидетельствует о переходе к сонному состоянию. Т.е. они обеспечивают определенный уровень функционального активности коры.

Специфические ядра делятся на переключающие (релейные) и ассоциативные. Переключающие ядра состоят из нейронов, у которых мало дендритов и длинный аксон. С их помощью происходит переключение сигналов, идущих от нижележащих отделов ЦНС, на соответствующие соматосенсорные зоны коры, в которых находится представительство определенных рецепторов. Например, в латеральных коленчатых телах переключаются зрительные сигналы на затылочные доли коры. В переключающих ядрах выделяется наиболее важная информация. При нарушении функции этих ядер выключается восприятие соответствующих сигналов.

Ассоциативные нейроны имеют большее количество отростков и синапсов. Это позволяет им воспринимать различные по характеру сигналы. Они получают эти сигналы от переключающих нейронов и осуществляют их первичный синтез. От них пути идут к ассоциативным зонам коры, в которых происходит высший синтез и формируются сложные ощущения.

Кроме того, ядра таламуса участвуют в формировании безусловных двигательных рефлексов сосания, жевания, глотания . В таламусе находится подкорковый центр болевой чувствительности , в котором формируется общее ощущение боли, не имеющее определенной локализации и окраски.

В гипоталамусе выделяют 32 пары ядер. Их несколько групп: преоптические , передние , средние , наружные и задние . Гипоталамус имеет многочисленные восходящие связи с лимбической системой, базальными ядрами, таламусом, корой. Нисходящие пути от него идут к таламусу, ретикулярной формации, вегетативным центрам ствола мозга и спинного мозга.

Гипоталамус является высшим подкорковым центром вегетативной регуляции. На висцеральные функции организма он влияет двумя путями. Во-первых через вегетативную нервную систему. Его передние ядра являются высшими парасимпатическими центрами . Поэтому при их возбуждении урежаются сердцебиения, снижается АД, понижается энергетический обмен, температура тела, суживаются зрачки и т.д. При возбуждении задних ядер возникает обратная картина, т.к. они являются высшими симпатическими центрами .

Во-вторых, гипоталамус влияет на многие функции через гипофиз. Посредством нервных и сосудистых связей он образует с ним единую гипоталамо-гипофизарную систему . Такое взаимодействие связано с тем, что некоторым нейронам гипоталамуса свойственно явление нейросекреции . Это способность продуцировать гормоноподобные вещества. В частности, в супраоптическом ядре вырабатываются нейрогормоны вазопрессин и окситоцин . По аксонам секретирующих нейронов они поступают в заднюю долю гипофиза, а оттуда выделяются в кровь. В медиальных ядрах синтезируются либерины и статины . По венозной гипоталамо-гипофизарной сети они транспортируются к передней доле гипофиза. Первые стимулируют синтез и выделение его гормонов, вторые тормозят. В свою очередь, тропные гормоны гипофиза влияют на функции других желез внутренней секреции.

Благодаря многочисленным связям, высокой чувствительности нейронов гипоталамуса к составу омывающей его крови, отсутствию в этом отделе гематоэнцефалического барьера, в нем находятся центры терморегуляции, регуляции водно-солевого обмена, обмена белков, жиров, углеводов и др. За счет них регулируется гомеостаз.

Гипоталамус участвует в формировании некоторых мотиваций и поведенческих реакций . Например, мотиваций и поведения голода, жажды. При раздражении вентромедиального ядра чувство голода и соответствующее поведение исчезают. При его разрушении, наоборот, наступает неутолимый голод. Т.е. здесь находятся центры голода и насыщения . При раздражении паравентрикулярного ядра развивается чувство жажды и питьевое поведение, а при разрушении жажда исчезает.

В гипоталамусе расположены центры бодрствования и сна .

В опытах с самораздражением (Олдс), когда в определенные ядра гипоталамуса вживляются электроды, установлено, что здесь находятся центры двух базисных эмоций – удовольствия и неудовольствия.

При раздражении некоторых ядер гипоталамуса у человека возникает эйфория , повышается сексуальность .

Гипоталамусу принадлежит важная роль в развитии стресса , т.е. реакций напряжения на угрожающую ситуацию. При воздействии физиологических или психологических стрессоров (холод, недостаток кислорода, эмоциональном напряжении) кора посылает сигналы к симпатическим центрам гипоталамуса, которые активируют симпатический отдел вегетативной нервной системы, выделение кортикотропин-релизинг-гормона, а как следствие – АКТГ. В результате происходит симпатическая активация внутренних органов, выделяются адреналин из мозгового слоя и кортикостероиды.

При патологии гипоталамуса возникают расстройства терморегуляции (гипер- и гипотермия), аппетита (афагия-, гиперфагия), сна. Эндокринные нарушения, связанные с гипоталамусом, могут проявляться преждевременным половым созреванием, нарушениями менструального цикла, полового влечения, несахарным диабетом.

Строение человека – весьма сложная вещь, особенно если речь идет о мозге. Это неутомляемая часть нашего организма, которая скрывает в себе все тайны и секреты человеческой сущности. Далее, поговорим о функциях промежуточного мозга и его роли во всем организме человека.

Основная задача промежуточного мозга регулировать двигательные рефлексы тела, координировать работу внутренних органов, а также осуществлять обмен веществ, поддерживать температура тела и тому подобное.

Само собой, что сам по себе промежуточный мозг мало какие процессы сможет осуществлять и регулировать. А вот вместе с головным он создает полноценную систему регуляции, координации и интеграции внутренних процессов в организме.

Строение

Прежде чем разговор зайдет о функциях, нужно вспомнить строение промежуточного мозга, которое каждый из нас учил еще в школе, но сегодня вряд ли помнит. Итак, среда обитания этого мозга между большими полушариями и . Таким образом, он расположен вверху ствола и состоит из трех частей:

  • таламус;
  • гипоталамус;
  • эпиталамус.

Каждый из этих терминов имеет более простую трактовку, понятную практически каждому человеку: зрительные бугры, подбугровая часть и надбугровая часть соответственно. Не страшно, если Вы запутались и уже не совсем понимаете, о чем речь. Сейчас мы все разберем.

Строение и функции таламуса

Таламус имеет яйце подобную форму, а его узкая часть смотрит назад. Он также имеет несколько частей, но мы поговорим больше о функциях, чем о структуре. Так вот, именно в таламусе происходят процессы интеграции и обработки жизненно важных сигналов, которые поступают в головной мозг человека.

Презентация на тему: "Строение и функции промежуточного мозга"

А происходит это благодаря ядрам, которые есть структурной единицей таламуса, их количество достигает 120 штук. Собственно, эти ядра и отвечают за разные функции. Они принимают сигналы и отправляют проекции на разные структуры. Так, к таламусу поступают сигналы от зрительной и слуховой системы, а также кожной вкусовой и мышечной.

Если говорить о нейронах, которые входят и выходят из таламуса, то функционально их можно разделить на несколько категорий:

  • Специфические – именно здесь пересекаются пути, которые направлены в кору от мышечной, слуховой, кожной, глазной, а также других видов чувствительных зон. От них информация передается исключительно в некоторые участки, а именно 3-4 слои коры. Когда происходит нарушение функций в этих ядрах, то человек теряет определенные виды чувствительности.
  • Не специфические ядра представляют собой весьма разнообразные комплексы, большая часть которых отвечает за сонное состояние. Таким образом, если будет нарушена функция этих комплексов, то у человека будет постоянно сонное состояние.
  • Ассоциативные. Основными составляющими ассоциативных ядер есть нейроны, они выполняют полисенсорные функции, именно благодаря им происходит возбуждение модальностей, а также создают интегрированный сигнал, который передает информацию в кору головного мозга.

Таким образом, таламус отвечает за регуляцию процессов в разных органах человека, так происходит перераспределение зрительной информации, слуховой и тактильной информации, а также распределение и сбор информации о чувстве равновесия и баланса.

Кроме того, что касается функции регуляции сна, то при ее нарушении у человека может развиться такая болезнь, как фатальная семейная бессонница, при которой пациент умирает от бессонницы, но к счастью, известно только 40 семей, у которых были подобные симптомы.

Основные функции гипоталамуса

Строение гипоталамуса весьма сложное, поэтому будем рассматривать параллельно строение и его функции. Гипоталамус организовывает гомеостатические, эмоциональные и поведенческие реакции организма человека. Он также может воздействовать на вегетативные функции человека (гуморально и нервно), что обуславливает влияние на симпатическую регуляцию. Кроме того, структурные элементы гипоталамуса имеют влияние на сохранение, а также на регенерацию резервов в организме человека. Так, ядра этой части промежуточного мозга, разделяют на несколько категорий:

  • ядра передней категории;
  • ядра задней категории;
  • ядра средней категории.

Сейчас наибольшее внимание будет уделено ядрам задней категории, ведь благодаря им происходят симпатические реакции в организме: увеличение кровяного давления, расширение зрачков, учащенное биение сердца.

Так, если задние ядра усиливают симпатические реакции, то ядра средней группы, наоборот, снижают их. В гипоталамусе происходят процессы следующих центров:

  • терморегуляции;
  • чувства голода;
  • ярости;
  • страха;
  • полового влечения и др.

Перечисленные процессы зависят от активации или торможения разнообразных частей ядер.

Например, когда происходит раздражение ядер передней группы, то организм человека моментально теряет тепло, а также расширяются сосуды, кроме того, они отвечают за эротическое удовольствие и эйфорию. А повреждение заднего гипоталамуса может вызвать летаргический сон.

Гипоталамус также регулирует координацию движений человека, например, при раздражении этой области могут происходить хаотические движения, которые характерны движениям при болевых ощущениях. Очень важную функцию ещё выполняет серый бугор, как составляющая гипоталамуса. При его повреждении, «выхода из строя» начинаются проблемы с обменом веществ, так, к примеру, у человека может наблюдаться сильная тяга к еде, жажда, чрезмерное выделение мочи, судороги, изменения кровяного состава и др.

Таким образом, можно сказать, что функции промежуточного мозга заключаются в следующем:

  • в осуществлении вегетативных функций;
  • в передаче сенсорных процессов в мозговых анализаторах;
  • в регуляции сна, поведения и памяти;
  • в восприятии чувств боли.

Ну и, конечно, гипофиз

Гипофиз очень тесно соприкасается с функциями гипоталамуса. Он накапливает гормоны:

  • которые регулируют водно-солевой баланс;
  • которые вырабатывает гипоталамус;
  • которые отвечают за нормальное функционирование матки и молочных желез у женского пола.

Передний мозг состоит из двух частей - промежуточного мозга и конечного мозга.

Промежуточный мозг, diencephalon, - конечный отдел мозгового ствола, сверху он покрыт большими полушариями, сзади соединен со средним мозгом. Полостью промежуточного мозга является IIIмозговой желудочек. Он расположен по средней линии и на фронтальном (т.е. параллельном лобной поверхности) разрезе имеет вид узкой вертикальной щели.

Промежуточный мозг (рис. 32, 33) состоит из парных образований - таламусов, thalamus (зрительных бугров), примыкающих к ним сверху непарного эпиталамуса (надбугорья, примыкает к таламусу сверху), непарного гипоталамуса (подбугорья, примыкает к таламусу снизу). Кроме того, в промежуточный мозг входит субталамус, который не виден на поверхности мозга и находится в глубине мозгового вещества между гипоталамусом и средним мозгом.



Рис. 32. Промежуточный мозг и средний мозг (вид сверху):

1 - мозолистое тело (конечный мозг); 2 - проводящие пути переднего

мозга; 3 - таламус; 4 - хвостатое ядро (конечный мозг); 5 - эпифиз;

6 - III мозговой желудочек; 7- четверохолмие

Таламус. Каждый таламус (см. рис. 32) представляет собой яйцевидное образование длиной примерно 4 см. Медиальные поверхности таламусов образуют боковые стенки третьего желудочка. Между этими стенками находится межбугорное сращение (серое вещество), соединяющее правый и левый таламусы. Передний конец таламуса несколько заострен, а задний расширен и утолщен.


Рис. 33. Промежуточный мозг и средний мозг (вид снизу):

1-4 - средний мозг: 1 - водопровод, 2 - красное ядро, 3 - черная

субстанция; 4 - ножки мозга; 5-8 - гипоталамус: 5 - мамиллярные

тела, 6 - воронка, 7 - зрительный перекрест, 8 - серый бугор;

9 - зрительный тракт; 10 - зрительный нерв; 11 - 12 - таламус:

11 - наружное коленчатое тело, 12 - внутреннее коленчатое тело;

13 - обонятельный треугольник (конечный мозг)

В каждом таламусе расположено около 40 ядер (рис. 34), которые можно разделить по выполняемым ими функциям на проекционные, ассоциативные и неспецифические.


Рис. 34. Ядра таламуса:

1 -лимбическиеядра; 2 - -вентролатеральные (двигательные) ядра;

3 - заднее вентральное ядро; 4 - подушка; 5 - латеральное

коленчатое тело; 6 - медиальное коленчатое тело;

7-медиодорсалъное (ассоциативное) ядро

Проекционные ядра - это переключательные ядра, полу чающие входы из различных внеталамических структур. Волокна из этих структур образуют синапсы на нейронах проекционных ядер, а аксоны последних проводят импульсацию в определенные локальные области коры больших полушарий. Проекционные ядра подразделяются на сенсорные, двигательные и лимбические.

Сенсорные ядра обеспечивают быстрое проведение сенсорной афферентации от конкретных сенсорных систем в первичные проекционные зоны коры больших полушарий. Пути от всех рецепторов (за исключением обонятельных) проходят через таламус и имеют там свои представительства. Например, в латеральном (наружном) коленчатом теле (ЛКТ), являющемся проекционным зрительным ядром и находящемся в задней наружной части таламуса, заканчиваются волокна зрительного тракта. Из ЛКТ нервные импульсы поступают в затылочную долю коры больших полушарий, где находится центральный отдел зрительного анализатора. В медиальном (внутреннем) коленчатом теле (МКТ) - проекционном слуховом ядре, расположенном в задней внутренней части таламуса, образуют синапсы волокна от слуховых ядер. МКТ посылает свои проекции в слуховую зону коры в височной доле. Отметим, что ЛКТ и МКТ объединяют под названием метаталамус. Проекционным ядром систем кожной и мышечной чувствительности является заднее вентральное ядро таламуса. Здесь заканчиваются волокна от нежного и клиновидного ядер продолговатого мозга (медиальный лемниск) и ядер тройничного нерва. Аксоны клеток заднего вентрального ядра направляются в переднюю часть теменной доли больших полушарий.

Зрительные функции выполняет также одно из ассоциативных ядер таламуса - подушка.

Необходимо подчеркнуть, что в сенсорных ядрах, как и в других ядрах таламуса, происходит не только переключение информации, но и ее обработка. Суть этой обработки состоит в избирательном проведении информации в кору больших полушарий. Иными словами, таламус исполняет роль фильтра, пропуская в конечный мозг либо очень значимые (сильные, новые) сигналы, либо сигналы, связанные с текущей деятельностью коры больших полушарий. Таким образом, таламус является одной из ключевых структур, обеспечивающих и поддерживающих процессы внимания.

Двигательные (моторные) ядра таламуса, лежащие в его нижней боковой части (вентролатеральные ядра), связаны проекционными волокнами с двигательной корой. Они полу чают информацию от мозжечка и базальных ядер, т.е. являются важнейшим переключательным звеном в системе управления движениями.

Лимбические ядра находятся в передней части таламуса. Они входят в лимбическую систему (см. гл. 9) и проводят сен сорную информацию в лимбические отделы коры больших полушарий.

На ассоциативных ядрах таламуса (дорсальная область) оканчиваются волокна не от одной, а сразу от нескольких сенсорных систем, а также от других ядер таламуса и коры больших полушарий. Это обеспечивает их участие в интегративных функциях головного мозга, т.е. в объединении разных видов чувствительности. Эти ядра посылают свои волокна в ассоциативные зоны коры больших полушарий. Дорсальные ядра - эволюционно молодые отделы промежуточного мозга. Их формирование идет параллельно развитию высших (ассоциативных) центров коры.

Неспецифические (медиальные) ядра таламуса, расположенные в его внутренней части, принадлежат, главным образом, ретикулярной системе. Они получают афференты от большого числа образований и посылают диффузные проекции на обширные области коры, влияя, таким образом, на уровень ее активации.

К медиальным ядрам примыкают области таламуса, обеспечивающие обработку и проведение вестибулярной, вкусовой и болевой чувствительности.

Гипоталамус - подбугорная область промежуточного мозга, высший центр регуляции вегетативных и эндокринных функций (см. рис. 20, 21, 33). Он объединяет ряд структур, окружающих нижнюю часть III мозгового желудочка- мамиллярные (сосцевидные) тела, серый бугор, зрительную хиазму. Серый бугор - это непарный полый выступ нижней стенки III желудочка. Его верхушка вытянута в полую воронку, infundibulum, на слепом конце которой находится железа внутренней секреции гипофиз.

С гипоталамусом связан зрительный нерв, который выходя из глазного яблока, входит в полость черепа. В гипоталамической области примерно половина его волокон переходит на другую сторону, образуя зрительную хиазму (перекрест), chiasma opticum. После перекреста зрительные волокна образуют зрительный тракт, волокна которого идут к различным структурам мозга, в частности, к латеральным коленчатым телам таламуса и к некоторым областям гипоталамуса.

Так же, как и в таламусе, в гипоталамусе выделяют несколько десятков ядер. Однако их функциональная классификация пока разработана недостаточно, так как большинство ядер не обладает узкой функциональной специализацией. Топографически выделяют переднюю группу ядер (паравентрикулярное, супраоптическое, супрахиазменное и др.), среднюю группу (ядро воронки или инфундибулярное ядро и др.) и заднюю группу (ядра мамиллярных тел и др.).

Дополнительно к этому в медиолатеральном направлении в гипоталамусе выделяют перивентрикулярную, медиальную и латеральную зоны (рис. 35). Перивентрикулярная зона образована мелкими нейронами, находящимися вдоль стенок III желудочка (греч. peri - вокруг, лат. ventriculus - желудочек). В медиальной зоне находится основная масса гипоталамических ядер. Латеральная зона содержит главным образом белое вещество (волокна, соединяющие гипоталамус с другими структурами ЦНС). Медиальная зона отделена от латеральной важнейшим проводящим пучком переднего мозга - сводом (см. далее).


Рис. 35. Зоны гипоталамуса в медиолатеральном направлении:

I - III желудочек; 2 - Перивентрикулярная зона, 3 - медиальная

зона; 4 - латеральная зона; 5- гипофиз

Количество источников афферентации гипоталамуса очень велико. Все его ядра получают прямые входы от коры больших полушарий (особенно ее лобной доли), т.е. аксоны нейронов коры образуют синапсы на клетках ядер гипоталамуса. Также гипоталамус имеет множество сенсорных входов: волокна зрительных нервов, волокна ядер одиночного пути (информация от вкусовых и внутренних рецепторов), волокна латеральной петли (слуховая чувствительность) заканчиваются на его нейронах. Получает афференты гипоталамус от лимбических и ассоциативных ядер таламуса, от РФ, от ряда других образований ЦНС.

Эфференты гипоталамуса главным образом идут к различным исполнительным структурам мозга - вегетативным ядрам, железам внутренней секреции (гипофизу и эпифизу), к покрышке среднего мозга, РФ продолговатого мозга и моста. Некоторые ядра гипоталамуса посылают свои волокна в конечный мозг - к коре больших полушарий и базальным ганглиям.

Большинство этих волокон проходит в составе проводящих пучков переднего мозга.

Отметим только три из них:

1) свод, fornix, волокна, идущие от корковой структуры гиппокампа (см. 7.4.2) к мамиллярным телам гипоталамуса;

2) мамилло-таламический тракт - волокна, идущие от мамиллярных тел к лимбическим ядрам таламуса;

3) гипоталамо-гипофизарный тракт - волокна, идущие от паравентрикулярного и супраоптического ядер к задней доле гипофиза.

Гипоталамус управляет всеми основными гомеостатическими процессами, причем осуществляет это как нервным, так и гуморальным путем.

Нервная регуляция обеспечивается, во-первых, за счет управления деятельностью вегетативной нервной системы и, во-вторых, участием в организации поведения, удовлетворяющего основные биологические потребности организма. Эти функции гипоталамуса обеспечиваются благодаря наличию в нем центров различных потребностей, а также нейронов, реагирующих на изменение внутренней среды организма (температуру крови, ее водно-солевой состав, концентрацию в ней гормонов и т.п.).

Например, при понижении в крови концентрации глюкозы, возбуждается находящийся в сером бугре центр голода, что приводит к возникновению чувства голода. Это вызывает за пуск поведенческих реакций, направленных на удовлетворение пищевой потребности. И наоборот, при повышении в крови концентрации глюкозы (что происходит после еды) возбуждается центр насыщения, тормозящий центр голода. При повышении температуры тела возбуждаются нейроны центра терморегуляции, которые запускают вегетативные ре акции (например, расширение поверхностных кожных сосудов), приводящие к понижению температуры. Также в гипоталамусе находятся центры жажды, водного насыщения, центры полового и родительского поведения (передняя область), цен тры агрессии и страха (задняя область) и т.п. Таким образом, именно здесь определяется уровень актуальности биологических потребностей организма.

Гипоталамус - одна из центральных структур лимбической системы мозга, осуществляющей организацию эмоционально го поведения. Несколько упрощая возникающие при этом процессы, данную функцию гипоталамуса можно описать следующим образом. Если потребности организма удовлетворяются, возбуждается расположенный здесь центр положительного подкрепления, что сопровождается возникновением положи тельных эмоций; если нет- возбуждается центр отрицательного подкрепления, и возникают отрицательные эмоции. Работа систем положительного и отрицательного подкрепления, в свою очередь, лежит в основе процессов обучения в ЦНС, формирования либо ослабления нервных связей (условных рефлексов, ассоциаций).

Гуморальная регуляция осуществляется в тесной связи с гипофизом (см. 1.3.1). Рассмотрим связь между гипоталамусом и гипофизом более подробно.

В нервной ткани есть нейросекреторные клетки, синтезирующие и выделяющие биологически активные вещества, действующие как гормоны. Кроме того, многие медиаторы нервной системы также могут действовать как гормоны. То есть если синтезируемое нейроном вещество выделяется в синоптическую щель и действует на постсинаптическую мембрану, оно является медиатором; если то же вещество выделяется в кровь и действует на орган-мишень - это гормон. Таким образом, нейрогормоны - биологически активные вещества, вырабатываемые нейросекреторными клетками и выделяющиеся в кровь.

Большинство нейрогормонов синтезируется в гипоталамусе - месте непосредственного взаимодействия нервной и эндокринной систем и высшем органе гормональной регуляции основных эндокринных функций. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему (рис. 36).


Рис. 36. Гипоталамо-гипофизарная система:

1. - паравентрикулярное ядро; 2 - супраоптическое ядро; 3 - гипофизотропная зона; 4 - зрительный перекрест; 5 - мамиллярные тела;

б - аксоны от нейронов паравентрикулярного и супраоптического ядер,

идущие к гипофизу; 7 - воронка; 8-10 - гипофиз: 8 - передняя доля,

9 - промежуточная доля, 10 - задняя доля

Как уже говорилось, в гипоталамусе есть рецепторы со стояния внутренней среды. Анализируя поступающую ин формацию, гипоталамус трансформирует ее в гуморальные факторы - нейрогормоны. Таким образом, нейроны гипоталамуса активируют либо тормозят выделение гипофизом его гормонов. Рассмотрим этот процесс более детально.

В средней части гипоталамуса (гипофизотропные зоны) находятся мелкоклеточные ядра (ядро воронки, ядра серого бугра), в которых синтезируется пептидные (состоящие из аминокислот) гормоны. Эти гормоны контролируют работу железистых клеток аденогипофиза и промежуточной доли гипофиза. Аксоны нейронов этих ядер оканчиваются в районе воронки, соединяющей гипоталамус и гипофиз. Там они выделяются в кровь и через нее попадают к железистым клеткам передней доли гипофиза. Гормоны, стимулирующие синтез и выделение гормонов гипофиза, получили название рилизинг гормонов (releasing-factors), или либеринов, а тормозящие эти процессы - ингибирующих гормонов, или статинов.

В передней части гипоталамуса находятся два ядра (паравентрикулярное и супраоптическое) с крупными нейронами, в которых синтезируются нейрогормоны окситоцин и вазопрессин. Аксоны этих нейронов формируют гипоталамо-гипофизарный тракт, по которому гормоны транспортируются из тел клеток в нейрогипофиз. Окончания аксонов образуют тесные контакты с капиллярами, в которые и выделяются гормоны. Таким образом, нейрогипофиз сохраняет и по мере необходимости выделяет в кровь гормоны, синтезированные в гипоталамусе.

Таким образом, гипоталамус на основании анализа со стояния внутренней среды организма запускает три группы реакций:

1) вегетативной нервной системы, направленные на поддержание гомеостаза;

2) поведенческие, направленные на удовлетворение потребностей организма;

3) эндокринной системы (главным образом через гипофиз).

Эпиталамус (см. рис. 32) занимает медиодорсокаудальное положение относительно других структур промежуточного мозга, т.е. находится в верхней (дорсальной) и задней (каудальной) его части посередине (медиально). Он занимает очень небольшой объем мозга и кроме различных нервных образований содержит железу внутренней секреции эпифиз (шишковидное тело).

К нервным образованиям эпиталамуса относятся поводки (или уздечки), habenula, треугольники поводков, комиссура поводков, ядра поводков.

Волокна, соединяющие эпиталамус с различными структурами переднего мозга (мозговые полоски), проходят по границе между медиальной и дорсальной сторонами таламуса. В каудальной части полоски переходят в поводок, который расширяется, образуя треугольник поводка. Медиальные части двух треугольников соединены волокнами комиссуры поводков. Под ней проходит задняя комиссура (см. 7.2.5). К комиссуре повод ков и задней комиссуре прикреплен эпифиз. В глубине треугольников поводков лежит серое вещество - ядра поводков (хабенулярные ядра), которые входят в лимбическую систему.

Функции эпиталамуса до сих пор не вполне ясны. По-видимому, в первую очередь, они связаны с деятельностью эпифиза, а нервные элементы эпиталамуса обеспечивают управление этой железой.

Эпифиз иннервируется симпатической нервной системой. Кроме того, он получает волокна от супрахиазменного ядра гипоталамуса, которое имеет прямые входы от зрительного нерва. Благодаря этому эпифиз получает информацию об уровне освещенности. Основной гормон эпифиза- мелатонин. Выяснилось, что ежедневные колебания его концентрации ритмичны и прямо связаны со световым циклом - концентрация мелатонина больше ночью. Это позволяет говорить о важной роли эпифиза в регуляции суточных ритмов. Мелатонин также влияет на половое созревание и половое поведение, тормозя активность половых желез.

Субталамус, как уже было сказано, находится на границе между средним мозгом и гипоталамусом. Структуры субталамуса можно увидеть только на разрезе мозга. Они включают несколько парных ядер серого вещества, разделенных прослойками белого вещества. Наиболее крупное ядро субталамуса - субталамическое ядро (тело Люиса).

Белое вещество включает тракты, проходящие из красного ядра среднего мозга в конечный мозг, а также собственные афференты и эфференты субталамуса. Основные афференты субталамус получает из конечного мозга - от коры больших полушарий и базальных ядер. Эфференты субталамуса идут в РФ продолговатого мозга и моста, в черную субстанцию и красное ядро (структуры среднего мозга), а также к базальным ядрам.

Из характера связей ясно, что субталамус входит в экстрапирамидную систему мозга (см. 6.4). Он принимает большое участие в организации движений, в частности локомоции - ритмических сгибаний и разгибаний конечностей и туловища, обеспечивающих перемещение тела в пространстве.

  • Августа 1981 года. Ра: Я есмь Ра. Я приветствую вас в любви и свете Одного Безконечного Творца
  • Августа 1981 года. Ра: Я есмь Ра. Я приветствую вас в любви и свете Одного Безконечного Творца
  • Августа 1981 года. Ра: Я есмь Ра. Я приветствую вас в любви и свете Одного Безконечного Творца

  • Структура

    Промежуточный мозг подразделяется на:

    • Таламический мозг (лат. thalamencephalon )
    • Подталамическую область или гипоталамус (лат. hypothalamus )
    • Третий желудочек, который является полостью промежуточного мозга

    Таламический мозг

    Таламический мозг включает три части:

    • Зрительный бугор (Таламус)
    • Надталамическую область (Эпиталамус)
    • Заталамическую область (Метаталамус)

    Таламус

    Таламус или зрительный бугор (лат. thalamus ) - парное образование яйцевидной формы - состоит в основном из серого вещества. Медиальная и верхняя поверхности свободны, а латерально-нижней поверхностью он сообщается с другими отделами мозга. Таламус является подкорковым центром всех видов чувствительности (болевой, температурной, тактильной, проприоцептивной). Таламус является местом переключения всех чувствительных проводящих путей, идущих от экстеро-, проприо- и интерорецепторов.

    Эпиталамус

    Эпиталамус или надталамическую область (лат. epithalamus ) располагается в верхнезадней части таламуса. Эпиталамус образует шишковидное тело (эпифиз), которое посредством поводков крепится к таламусу. Шишковидное тело представляет собой железу внутренней секреции, которая отвечает за синхронизацию биоритмов организма с ритмами окружающей среды.

    Метаталамус

    Метаталамус или заталамическую область (лат. metathalamus ) образован парными медиальным и латеральным коленчатыми телами, лежащими позади таламуса. Медиальное коленчатое тело находится позади подушки таламуса. Оно является подкорковым центром слуха. Латеральное коленчатое тело расположено книзу от подушки. Оно является подкорковым центром зрения.

    Гипоталамус

    Гипоталамус или подталамическую область расположен под таламусом. Гипоталамус включает в себя сосцевидные тела , являющиеся подкорковыми центрами обоняния, гипофиз , зрительный перекрест , II пары черепных нервов , серый бугор , представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы.

    Гипоталамус подразделяется на четыре части:

    • Передняя гипоталамическая часть
    • Промежуточная гипоталамическая часть
    • Задняя гипоталамическая часть
    • Дорсо-латеральная гипоталамическая часть