Гнилостная инфекция: лечение, симптомы и профилактика. Лечение нарушений микрофлоры кишечника Кишечная палочка человека

В процессе обмена веществ микроорганизмы не только осуществляют синтез сложных белковых веществ собственной цитоплазмы, но и производят глубокое разрушение белковых соединений субстрата. Процесс минерализации органических белковых веществ микроорганизмами, протекающий с выделением аммиака или с образованием аммонийных солей, получил в микробиологии название гниения или аммонификации белков.

Таким образом, в строгом микробиологическом смысле гниение - это минерализация органического белка, хотя в повседневной жизни «гниением» называют целый ряд разнообразных процессов, имеющих чисто случайное сходство, объединяя в этом понятии и порчу пищевых продуктов (мяса, рыбы, яиц, плодов, овощей), и разложение трупов животных и растений, и разнообразные процессы, протекающие в навозе, растительных отбросах, и т.д.

Аммонификация белка - сложный многоступенчатый процесс. Его внутренняя сущность заключается в энергетических превращениях микроорганизмами аминокислот с использованием их углеродного скелета в синтезе цитоплазменных соединений. В естественных условиях разложение богатых белками веществ растительного и животного происхождения, возбуждаемое различными бактериями, плесенями, актиномицетами, протекает необычайно легко как при широком доступе воздуха, так и в условиях полного анаэробиоза. В связи с этим химизм разложения белковых веществ и природа возникающих продуктов распада могут сильно варьировать в зависимости от вида микроорганизма, химической природы белка, условий протекания процесса: аэрации, влажности, температуры.

При доступе воздуха, например, процесс гниения протекает очень интенсивно, вплоть до полной минерализации белковых веществ - образуется аммиак и даже частично элементарный азот, образуются либо метан, либо углекислый газ, а также сероводород и соли фосфорной кислоты. В анаэробных условиях, как правило, полной минерализации белка не происходит, и часть возникающих (промежуточных) продуктов гниения, имеющих обычно неприятный запах, сохраняется в субстрате, придавая ему тошнотворный запах гниения.

Препятствует аммонификации белков низкая температура. В вечномерзлых слоях земли Крайнего Севера находили, например, трупы мамонтов, пролежавшие десятки тысячелетий, но не подвергшиеся разложению.

В зависимости от индивидуальных свойств микроорганизмов - возбудителей гниения - происходит либо неглубокий распад белковой молекулы, либо глубокое ее расщепление (полная минерализация). Но есть и такие микроорганизмы, которые принимают участие в гниении лишь после того, как в субстрате в результате жизнедеятельности других микробов появляются продукты гидролиза белковых веществ. Собственно «гнилостными» называют тех микробов, которые возбуждают глубокий распад белковых веществ, обусловливая полную их минерализацию.

Белковые вещества в процессе питания не могут быть непосредственно усвоены микробной клеткой. Коллоидная структура белков препятствует их поступлению в клетку через клеточную оболочку. Лишь после гидролитического расщепления более простые продукты гидролиза белков проникают внутрь микробной клетки и используются ею в синтезе клеточного вещества. Таким образом, гидролиз белков протекает вне тела микроба. Микроб для этого выделяет в субстрат протеолитические экзоферменты (протеиназы). Такой способ питания обусловливает в субстратах разложение огромных масс белковых веществ, тогда как внутри микробной клетки в белковую форму превращается лишь сравнительно небольшая часть продуктов гидролиза белка. Процесс расщепления белковых веществ в данном случае в большой степени преобладает над процессом их синтеза. В силу этого общебиологическая роль гнилостных микробов как агентов разложения белковых веществ огромна.

Механизм минерализации сложной белковой молекулы гнилостными микробами можно представить следующей цепью химических превращений:

I. Гидролиз крупной белковой молекулы до альбумоз, пептонов, полипептидов, дипептидов.

II. Продолжающийся более глубокий гидролиз продуктов расщепления белка до аминокислот.

III. Превращения аминокислот под действием микробных ферментов. Разнообразие аминокислот и ферментов, имеющихся в ферментативном комплексе различных микробов, те или иные условия протекания процесса обусловливают и чрезвычайное химическое разнообразие продуктов превращения аминокислот.

Так, аминокислоты могут подвергаться декарбоксилированию, дезаминированию как окислительному, так и восстановительному и гидролитическому. Энергичная карбоксилаза вызывает декарбоксилирование аминокислот с образованием летучих аминов или диаминов, имеющих тошнотворный запах. Из аминокислоты лизина при этом образуется кадаверин, из аминокислоты орнитина - путресцин:

Кадаверин и путресцин получили название «трупных ядов» или птомаинов (от греческого ptoma - труп, падаль). Ранее считалось, что птомаины, возникающие при распаде белков, вызывают пищевые отравления. Однако в настоящее время выяснено, что ядовитыми являются не сами птомаины, а сопутствующие им их производные - нейрин, мускарин, а также некоторые вещества неизвестной химической природы.

При дезаминировании от аминокислот отщепляется аминогруппа (NH2), из которой образуется аммиак. Реакция субстрата при этом становится щелочной. При окислительном дезаминировании, кроме аммиака, образуются еще и кетонокислоты:

При восстановительном дезаминировании возникают предельные жирные кислоты:

Гидролитическое дезаминирование и декарбоксилирование приводят к возникновению спиртов:

Кроме того, могут образоваться при этом и углеводороды (например, метан), непредельно жирные кислоты, водород.

Из ароматических аминокислот в анаэробных условиях возникают дурнопахнущие продукты гниения: фенол, индол, скатол. Индол и скатол образуются обычно из триптофана. Из аминокислот, содержащих серу, в аэробных условиях гниения возникают сероводород или меркаптаны, также обладающие неприятным запахом тухлых яиц. Сложные белки - нуклеопротеиды - распадаются на нуклеиновые кислоты и белок, которые в свою очередь расщепляются. Нуклеиновые кислоты при распаде дают фосфорную кислоту, рибозу, дезоксирибозу и азотистые органические основания. В каждом конкретном случае возможно протекание только части указанных химических превращений, а не полностью всего цикла.

Появление в пищевых продуктах, богатых белком (таких, как мясо или рыба), запаха аммиака, аминов и других продуктов распада аминокислот является показателем их микробной порчи.

Микроорганизмы, возбуждающие аммонификацию белковых веществ, очень широко распространены в природе. Они встречаются повсеместно: в почве, в воде, в воздухе - и представлены чрезвычайно разнообразными формами - аэробными и анаэробными, факультативноанаэробными, спорообразующими и бесспорозыми.

Аэробные гнилостные микроорганизмы

Сенная палочка (Bacillus subtilis) (рис. 35) - широко распространенная в природе аэробная бацилла, обычно выделяемая из сена, очень подвижная палочка (3-5 х 0,6 мкм) с перитрихиальным жгутованием. Если выращивание производить на жидких средах (например, на сенном отваре), то клетки бациллы получаются несколько крупнее и соединяются в длинные цепочки, образуя на поверхности жидкости морщинистую и сухую серебристо-беловатую пленку. При развитии на твердых средах, содержащих углеводы, образуется мелкоморщинистая сухая или зернистая, срастающаяся с субстратом колония. На ломтиках картофеля колонии сенной палочки всегда получаются слегка морщинистыми, бесцветными или слегка розоватыми, напоминающими бархатистый налет.

Развивается сенная палочка в очень широком диапазоне температур, являясь практически космополитом. Но вообще считается, что наилучшей температурой для ее развития является 37-50 °С. Споры у сенной палочки овальные, располагаются эксцентрально, без строгой локализации (но все же во многих случаях ближе к центру клетки). Прорастание спор экваториальное. Грамположительна, углеводы разлагает с образованием ацетона и уксусного альдегида, обладает очень высокой протеолитической способностью. Споры сенной палочки весьма термоустойчивы - нередко сохраняются в консервах, стерилизованных при 120°С.

Картофельная палочка (Bac. mesentericus) (рис. 36) - распространена в природе не менее широко, чем сенная. Обычно картофельная палочка встречается на картофеле, попадая сюда из почвы.

Морфологически картофельная палочка очень сходна с сенной: ее клетки (3-10 х 0,5-0,6 мкм) имеют перитрихиальное жгутование; встречаются как одиночные, так и соединенные в цепочку. Споры картофельной палочки, как и сенной, овальные, иногда встречаются продолговатые, крупные; располагаются они в любой части клетки (но чаще центрально). При формировании спор клетка не раздувается, споры прорастают экваториально.

При выращивании на ломтиках картофеля картофельная палочка образует обильный желтовато-бурый складчатый влажно блестящий налет, напоминающий брыжейку, благодаря чему микроб и получил свое название. На агаровых белковых средах образует тонкие, сухие и морщинистые колонии, не срастающиеся с субстратом.

По Граму картофельная палочка окрашивается положительно. Оптимальная температура развития, как и у сенной палочки, 35-45 °С. При разложении белков образует много сероводорода. Споры картофельной палочки очень термоустойчивы и подобно спорам сенной палочки выдерживают длительное кипячение, часто сохраняясь в консервированных продуктах.

Bac. сеreus. Это - палочки (3-5 х 1-1,5 мкм) с прямыми концами, одиночные или соединенные в запутанные цепочки. Встречаются варианты и с более короткими клетками. Цитоплазма клеток заметно зернистая или вакуолистая, по концам клеток часто образуются блестящие жироподобные зерна. Клетки бациллы подвижные, с перитрихиальным жгутованием. Споры Вас. cereus образует овальные или эллипсоидные, обычно располагающиеся центрально и прорастающие полярно. При развитии на МПА (мясопептонном агаре) бацилла образует крупные компактные колонии со складчатым центром и ризоидными волнистыми краями. Иногда колонии бывают мелкобугристыми с бахромчатыми краями и жгутиковидными выростами, с характерными крупинками, преломляющими свет. Bac. cereus является аэробом. Однако в некоторых случаях развивается и при затрудненном доступе кислорода. Встречается эта бацилла в почве, в воде, на растительных субстратах. Желатину разжижает, молоко пептонизирует, крахмал гидролизует. Температурный оптимум развития Bac. cereus 30 °С, максимум 37-48 °С. При развитии в мясопептонном бульоне образует обильную однородную муть с легко распадающимся мягким осадком и нежной пленкой на поверхности.

Из других аэробных гнилостных микробов можно отметить земляную палочку (Вас. mycoides), Вас. megatherium, а также бесспоровые пигментные бактерии - «чудесную палочку» (Bact. prodigiosum), Pseudomonas fluorescens.

Земляная палочка (Bac. mycoides) (рис. 37) - одна из очень распространенных гнилостных почвенных бацилл, имеет довольно крупные (5-7 х 0,8-1,2 мкм) одиночные или соединенные в длинные цепочки клетки. На твердых средах земляная палочка образует весьма характерные колонии - пушистые, ризоидные или мицелиевидные, стелющиеся по поверхности среды, как грибной мицелий. За это сходство бацилла и получила название Bac. mycoides, что значит «грибовидная».

Bac. megaterium - бацилла, имеющая крупные размеры, за что и получила свое название, означающее «большое животное». Она постоянно встречается в почве и на поверхности гниющих материалов. Молодые клетки обычно толстые - до 2 мкм в поперечнике, длиной от 3,5 до 7 мкм. Содержимое клеток грубозернистое с большим количеством крупных включений жироподобного или гликогеноподобного вещества. Нередко включения заполняют почти сплошь всю клетку, придавая ей весьма характерное строение, по которому легко распознают данный вид. Колонии на агаровых средах гладкие, грязно-белые, жирно-блестящие. Края колонии резко обрезаны, иногда волнисто-бахромчатые.

Пигментная бактерия Pseudomonas fluorescens мелкая (1-2 х 0,6 мкм) грамотрицательная бесспоровая палочка, подвижная, с лофотрихиальным жгутованием. Бактерия образует зеленовато-желтый флюоресцирующий пигмент, который, проникая в субстрат, окрашивает его в желто-зеленый цвет.

Пигментная бактерия Bacterium prodigiosum (рис. 38) широко известна под названием «чудесная палочка» или «палочка чудесной крови». Очень маленькая грамотрицательная бесспоровая подвижная палочка с перитрихиальным жгутованием. При развитии на агаровых и желатиновых средах образует колонии темно-красного цвета с металлическим блеском, напоминающие капли крови.

Появление таких колоний на хлебе и картофеле в средние века вызывало у религиозных людей суеверный ужас и связывалось с злокознями «еретиков» и «дьявольским наваждением». Из-за этой безвредной бактерии святейшая инквизиция сожгла на кострах не одну тысячу совершенно невинных людей.

Факультативноанаэробные бактерии

Палочка протея, или вульгарный протей (Proteus vulgaris) (рис. 39). Этот микроб является одним из наиболее типичных возбудителей гниения белковых веществ. Он часто встречается на самопроизвольно загнившем мясе, в кишечнике животных и человека, в воде, в почве и пр. Клетки этой бактерии отличаются большой полиморфностью. В суточных культурах на мясо- пептонном бульоне они мелкие (1-3 х 0,5 мкм), с большим количеством перитрихиально расположенных жгутиков. Затем начинают появляться извитые нитевидные клетки, достигающие в длину 10-20 мкм и более. Благодаря такому разнообразию в морфологическом строении клеток бактерия и была названа по имени морского бога Протея, которому древнегреческая мифология приписывала способность менять свой образ и превращаться по желанию в различных животных и чудовищ.

Как мелкие, так и крупные клетки протея обладают сильным движением. Это придает колониям бактерии на твердых средах, характерную особенность «роения». Процесс «роения» заключается в том, что из колонии выходят отдельные клетки, скользят по поверхности субстрата и на некотором расстоянии от нее останавливаются, размножаются, давая начало новому росту. Получается масса мелких, едва видимых простым глазом беловатых колоний. От этих колоний снова отделяются новые клетки и на свободной от микробного налета части среды образуют новые центры размножения и т.д.

Вульгарный протей - грамотрицательный микроб. Оптимальная температура его развития 25-37°С. При температуре около 5 °С он прекращает свой рост. Протеолитическая способность протея очень велика: он разлагает белки с образованием индола и сероводорода, вызывая резкое изменение кислотности среды - среда становится сильнощелочной. При развитии на углеводных средах протей образует много газов (CO2 и H2).

В условиях умеренного доступа воздуха при развитии на пептонных средах некоторой протеолитической способностью обладает кишечная палочка (Escherichia coli). Характерно при этом образование индола. Но кишечная палочка не является типичным гнилостным микроорганизмом и на углеводных средах в анаэробных условиях вызывает нетипичное молочнокислое брожение с образованием молочной кислоты и целого ряда побочных продуктов.

Анаэробные гнилостные микроорганизмы

Clostridium putrificum (рис. 40) - энергичный возбудитель анаэробного разложения белковых веществ, осуществляющий это расщепление с обильным выделением газов - аммиака и сероводорода. Cl. putrificum довольно часто встречается в почве, воде, в полости рта, в кишечнике животных и на разных гниющих продуктах. Иногда может быть обнаружен и в консервах. Cl. putrificum - подвижные палочки с перитрихиальным жгутованием, удлиненные и тонкие (7-9 х 0,4-0,7 мкм). Встречаются и более длинные клетки, соединенные в цепочки и одиночные. Температурный оптимум развития клостридия 37 °С. Развиваясь в глубине мясопептонного агара, он образует хлопьевидные рыхлые колонии. Споры шаровидные, расположены терминально. При спорообразовании в месте возникновения споры клетка сильно раздувается. Спороносящие клетки Cl. putrificum напоминают спороносящие клетки бациллы ботулизма.

Термоустойчивость спор Cl. putrificum довольно высокая. Если при производстве консервов споры не будут уничтожены, при хранении готовой продукции на складе они могут развиться и вызвать порчу (микробиологический бомбаж) консервов. Сахаролитическими свойствами Cl. putrificum не обладает.

Clostridium sporogenes (рис. 41) - по морфологическим признакам представляет собой довольно крупную палочку с закругленными концами, легко образующую цепочки. Микроб очень подвижен благодаря перитрихиально расположенным жгутикам. Название Clostridium sporogenes, данное И. И. Мечниковым (1908 г.), характеризует способность этого микроба быстро образовывать споры. Через 24 ч под микроскопом можно видеть много палочек и свободно лежащих спор. Через 72 ч процесс спорообразования заканчивается и вегетативных форм совсем не остается. Споры микроб образует овальные, расположенные центрально или ближе к одному из концов палочки (субтерминально). Капсул не образует. Оптимум развития 37 °С.

Cl. sporogenes - анаэроб. Токсическими и патогенными свойствами не обладает. В анаэробных условиях на агаровых средах образует поверхностные мелкие, неправильной формы, вначале прозрачные, а затем превращающиеся в непрозрачные желтовато-белые колонии с бахромчатыми краями. В глубине агара колонии образуются «мохнатые», круглые, с плотным центром. Аналогично в анаэробных условиях микроб вызывает быстрое помутнение мясопептонного бульона, газообразование и появление неприятного гнилостного запаха. В ферментативном комплексе Clostridium sporogenes содержатся очень активные протеолитические ферменты, способные расщеплять белок, до последней его стадии. Под действием Clostridium sporogenes молоко пептонизируется уже через 2-3 дня и рыхло свертывается, желатина разжижается. На средах с печенью иногда образуется черный пигмент с выделяющимися белыми кристаллами тирозина. Микроб вызывает почернение и переваривание мозговой среды и резкий гнилостный запах. Кусочки ткани быстро перевариваются, разрыхляются и расплавляются почти до конца в течение нескольких дней.

Clostridium sporogenes обладает также и сахаролитическими свойствами. Распространенность этого микроба в природе, резко выраженные протеолитические свойства, высокая термоустойчивость спор характеризуют его как одного из главных возбудителей гнилостных процессов в пищевых продуктах.

Cl. sporogenes является возбудителем порчи мясных и мясо-овощных консервов. Чаще всего подвергаются порче консервы «Мясо тушеное» и первые обеденные блюда с мясом и без мяса (борщ, рассольник, щи и др.). Наличие небольшого количества спор, оставшихся в продукте после стерилизации, может вызвать порчу консервов при хранении в условиях комнатной температуры. Наблюдается сначала покраснение мяса, затем почернение, появляется резкий гнилостный запах, при этом часто наблюдается бомбаж банок.

В гнилостном разложении белков принимают участие и различные плесневые грибы и актиномицеты - Penicillium, Mucor mucedo, Botrytis, Aspergillus, Trichoderma и др.

Значение процесса гниения

Общебиологическое значение процесса гниения огромно. Гнилостные микроорганизмы являются «санитарами земли». Вызывая минерализацию громадного количества белковых веществ, попадающих в почву, осуществляя разложение трупов животных и растительных отбросов, они производят биологическую очистку земли. Глубокое расщепление белков вызывают споровые аэробы, менее глубокое - споровые анаэробы. В природных условиях этот процесс совершается поэтапно в содружестве многих видов микроорганизмов.

Но в пищевом производстве гниение является вредным процессом и наносит большой материальный ущерб. Порча мяса, рыбы, овощей, яиц, фруктов и других продуктов питания наступает быстро и протекает очень энергично, если хранить их незащищенными, в условиях, благоприятных для развития микробов.

Лишь в отдельных случаях в пищевом производстве гниение может быть использовано как полезный процесс - при созревании соленой сельди и сыров. Используется гниение в кожевенном производстве для швицевания шкур (удаление шерсти со шкур животных при выработке кож). Зная причины процессов гниения, люди научились защищать пищевые продукты белкового происхождения от их распада путем применения самых разнообразных методов консервирования.

Возникает гнилостная инфекция только в тех ранах, в которых присутствуют омертвевшая ткань, подвергающаяся распаду в результате активности гнилостных бактерий. Подобный патологический процесс является осложнением обширных поражений мягких тканей, пролежней и открытых переломов. Гнилостная природа связана с активной жизнедеятельностью неклостридиальных анаэробов, присутствующих в области слизистой оболочки желудочно-кишечного тракта, женских органов мочеполовой системы и дыхательных путей.

Гнилостный распад тканей представляет собой анаэробный окислительный процесс белкового субстрата. В развитии этой патологии принимают участие такие микробы гниения, как грамотрицательные палочки (Fusobacterium, Bactericides), грамположительные палочки (Eubacterium, Propionibacterium, Actinomyces), протей, кишечная палочка и Veilonella.

Многие специалисты утверждают, что только 10% хирургических инфекций не относятся к эндогенному происхождению. Это связано с тем, что практически вся микрофлора человека состоит из анаэробов. Анаэробная и смешанная флора и является составляющим наиболее значительных форм гнойно-воспалительных болезней в организме человека. Особенно часто такие процессы присутствуют в развитии гинекологических, абдоминальных и стоматологических заболеваний. Инфекции мягких тканей появляются аналогично при наличии смешанной или анаэробной микрофлоры.

Смешанная микрофлора является не простой совокупностью бактерий, потому как большинство патологических процессов прогрессируют только тогда, когда соединяются два участника ассоциации.

Не только аэробы создают подходящие условия для жизнедеятельности анаэробов. Обратный эффект также возможен. В качестве активаторов подавляющего большинства анаэробных патологических процессов инфекционного характера выступают полимикробы. Именно поэтому положительный результат от проводимого лечения достигается только при воздействии на каждую разновидность микроорганизмов.

Чаще всего гнилостные очаги возникают при следующих поражениях:

  • заражение мягких тканей;
  • заболевание легких;
  • болезни брюшины.

Существует несколько гнилостных микробов, которые могут спровоцировать развитие подобной инфекции в качестве самостоятельного заболевания. Обратить внимание следует на сочетание Spirochete bucallis и Bac. fusiformis. Совокупность данных микроорганизмов называется фузоспириллярным симбиозом. Самой грозной формой патологического процесса считается гнилостная флегмона, которая развивается на дне ротовой полости и называется также ангиной Людовика.

Симптоматика гнилостно процесса

В качестве самостоятельного процесса гнилостная инфекция развивается в области поражения мягких тканей достаточно редко, чаще она присоединяется к развитым анаэробным и гнойным инфекционным процессам. Именно поэтому клиническая картина подобного осложнения практически во всех случаях нечеткая и сливается с проявлениями гнойных или анаэробных очагов.

Гнилостная форма инфекции протекает в сопровождении следующей симптоматики:

  • ярко выраженного подавленного состояния;
  • характерного снижения аппетита;
  • появления сонливости в дневное время;
  • скороспешного развития анемии.

В качестве самого раннего признака наличия в организме человека гнилостного распада выступает появление внезапного озноба. Наличие экссудата (зловония) также считается важным первичным признаком развития патологических изменений в организме. Неприятный резковатый запах является ничем иным, как последствием жизнедеятельности гнилостных бактерий.

Не все разновидности анаэробов способствуют образованию веществ, вызывающих зловонный запах. Чаще всего причиной тому является строгий и факультативный вид микроорганизмов. Отсутствие зловонности наблюдается иногда и при сочетании аэробов с анаэробами. Именно поэтому отсутствие столь неприятного симптома не может указывать на то, что инфекция имеет не гнилостное происхождение!

Данная инфекция имеет такие вторичные симптомы, как гнилостный характер повреждения мягких тканей. В очагах поражения присутствуют омертвевшие ткани, ограниченные правильными очертаниями. Чаще всего серо-зеленый или серый бесструктурный детрит заполняет межтканевые щели или же приобретает разнообразные формы. Окраска экссудата чаще неоднородная и в некоторых случаях варьируется до коричневого цвета. В нем содержатся небольшие капельки жира.

Гнилостная инфекционная природа раны может давать такие симптомы, как большое скопление гноя. В данном случае экссудат в клетчатке разжижается. При поражении мышечной ткани его количество мизерно и в основном наблюдается в качестве диффузной пропитки поврежденной ткани. Если присутствует аэробная инфекция, то гной приобретает густую консистенцию. Цвет его варьируется от белого до желтого, окрас однородный, запах нейтральный.

Следует также обратить внимание на такие симптомы, как отсутствие отечности, гнойного заплыва, газообразования и крепитации на начальных развитиях патологического процесса. Часто внешние признаки поражения мягкой ткани не соответствуют его глубине. Отсутствие гиперемии кожи приводит в замешательство многих хирургов, поэтому своевременная хирургическая обработка патологического очага может быть проведена несвоевременно.

Гнилостная инфекция начинает распространяться в области подкожной клетчатки, переходя в межфасциальное пространство. При этом происходит некроз мышц, сухожилий и фасций.

Гнилостная инфекция развивается в трех формах:

  • присутствуют симптомы шоковых явлений;
  • отмечается бурно прогрессирующее течение;
  • отмечается вялое течение.

При первых двух формах инфекция протекает в сопровождении общей интоксикации: повышения температуры, появления озноба, развития почечной или печеночной недостаточности и снижения артериального давления.

Как справиться с данной патологией

Инфекция гнилостной природы является серьезной угрозой для здоровья человека, поэтому лечение прогрессирующего процесса должно быть начато как можно раньше. Для эффективного устранения подобного заболевания проводятся следующие мероприятия:

  • создаются неблагоприятные условия для жизнедеятельности бактерий (удаление омертвевшей ткани, проведение антибактериальной терапии и широкого дренирования тканей);
  • назначение детоксикационной терапии;
  • проведение коррекции иммунного статуса и гемостаза.

Прогрессирующая инфекция гнилостного характера требует удаления пораженных тканей. Лечение практически всегда требует хирургического вмешательства в связи с анатомическим расположением, особенностью течения и распространением патогенных микроорганизмов, радикальных результатов добиться получается не во всех случаях. При низкой эффективности ранее принятых мер лечение проводится при помощи широких разрезаний гнойных очагов, иссечения некротизированной ткани, местного введения антисептиков и дренирования раны. Профилактика распространения гнилостного процесса в области здоровых тканей заключается в осуществлении ограничивающих хирургических разрезов.

Если инфекция имеет анаэробный характер, то лечение осуществляется при помощи постоянной перфузии или орошения раны растворами, содержащими перманганат калия и перекись водорода. Эффективно в данном случае использование мазей, имеющих полиэтиленоксидную основу (Левомеколь, Левосин). Данные средства способствуют эффективному всасыванию экссудата, что сопровождается быстрым очищением раны.

Лечение антибиотиками проводится под контролем антибиотикограммы. Такое заболевание, как гнилостное поражение мягких тканей, может быть вызвано микроорганизмами, обладающими устойчивостью перед антибактериальной терапией. Именно поэтому подобное лечение должно осуществляться также и под наблюдением врача.

Медикаментозное лечение такого состояния, как инфекция гнилостно характера проводится при помощи следующих средств:

  • антибиотики – линкомицин, тиенам, рифампицин;
  • метронидазоловые противомикробные препараты – метрагил, метронидазол, тинидазол.

Лечение и профилактика детоксикации и гомеостаза назначается и проводится индивидуально в соответствии с симптоматикой и характером течения патологического процесса для каждого случая. При бурном септическом течении принимают интракорпоральные детоксикационные меры: проводят эндолимфатическую терапию и назначают гемоинфузионную детоксикацию. В обязательном порядке показано проведение таких процедур, как УФОК (ультрафиолетового облучения крови) и ВЛОКА (внутривенного лазерного облучения крови). Рекомендуется проведение аппликационной сорбации, которая подразумевает наложение сорбентов, антибиотиков и иммобилизированных ферментов на пораженный участок тканей. В случае развития осложнений в виде печеночной недостаточности назначается гемодиализ и применяется плазмаферез и гемсорбация.

Последствия

Бактерии обитают везде: на земле и на воде, под землей и под водой, в воздушной среде, в телах других созданий природы. Так, к примеру, в организме здорового взрослого представителя рода людского обитает свыше 10 тысяч видов микроорганизмов, а общая их масса составляет от 1 до 3 процентов всего веса человека. Часть микроскопических созданий в качестве питания используют органику. Среди них значимое место занимают бактерии гниения. Они разрушают останки мертвых тел животных и растений, питаясь данной материей.

Естественный процесс

Разложение органики является естественным процессом и к тому же обязательным, словно бы четко запланированным самой природой. Без гниения невозможен был бы на Земле. И в любом случае признаки разложения означают появление новой жизни, зарождающейся вначале. Бактерии гниения здесь - важные персоны! Среди всего богатства органических форм жизни именно они отвечают за этот трудоемкий и незаменимый процесс.

Что такое гниение

Суть в том, что сложнейшая по своему составу материя распадается на более простые элементы. Современное представление ученых об этом процессе, превращающем в неорганические, можно описать следующими действиями:

  • Бактерии гниения обладают метаболизмом, что разрывает химическим путем связи молекул органики, содержащих азот. Процесс питания происходит в форме захвата молекул белка и аминокислот.
  • Ферменты, что выработаны микроорганизмами, в процессе расщепления высвобождают аммиак, амины, сероводород из молекул белка.
  • Продукты, поступающие в гниения, используются для получения энергии.

Высвобождая аммиак

Круговорот азота - важная составляющая жизни на Земле. А микроорганизмы, в нем участвующие, - одна из самых многочисленных групп. В природных экосистемах они играют основную восстанавливающую роль в минерализации почвы. Отсюда и название - редуцент (что означает "восстанавливающий"). Здесь широко представлены бактерии разложения и гниения аммонифицирующие, то есть способные высвобождать азот из мертвой органики. Это неспорообразующие энтеробактерии, бациллы, спорообразующие клостридии.

Сенная палочка

Bacillus subtilis - одна из самых распространенных и изученных исследователями бактерий. Живет в почве, в основном осуществляет дыхание при помощи кислорода. Состав тела - одна Это довольно крупный микроорганизм, изображение которого можно получить при помощи простого увеличения. Для питания сенная палочка вырабатывает протеазы - ферменты катализации, которые пребывают на внешней оболочке ее клетки. С помощью ферментов бактерия разрушает структуру молекулы белка (пептидную связку аминокислот), тем самым высвобождается аминогруппа. Как правило, этот процесс происходит в несколько этапов и приводит к синтезу энергии в клетке (АТФ). Разложение, вызванное бактериями (гниение), сопровождается образованием токсичных соединений, вредных для человека.

Что это за вещества

В первую очередь это конечные продукты: аммиак и сероводород. Также при неполной минерализации образуются:

  • (кадаверин, например);
  • соединения ароматического характера (скатол, индол);
  • при гниении аминокислот, содержащих серу, образуются тиолы, диметилсульфоксид.

Вообще-то, в рамках, контролируемых иммунитетом, процесс разложения - часть пищеварительного процесса для многих животных и для человека. Он происходит, как правило, в толстом кишечнике, и бактерии, вызывающие гниение, играют в нем первостепенную роль. Но в больших масштабах отравление продуктами гниения может привести к плачевным результатам. Человек нуждается в срочной медицинской помощи, и восстанавливающей микрофлору терапии. К тому же накопление в организме аммиака может инициироваться некоторыми видами бактерий, в том числе и В результате в некоторых тканях накапливается аммиак. Но при нормальном функционировании всех систем он связывается до мочевины и затем выводится из организма человека.

Сапротрофы

Бактерии гниения относят к сапротрофам, наряду с бактериями брожения. И те и другие расщепляют органические соединения - азотсодержащие и углеродсодержащие соответственно. В обоих случаях высвобождается энергия, используемая для питания и жизнеобеспечения микроорганизмов. Без бактерий брожения (к примеру, кисломолочных) человечество не получило бы таких важнейших продуктов питания, как кефир или сыр. Также широко они нашли применение в кулинарии и виноделии.

Но сапротрофные бактерии гниения могут вызывать и Данный процесс, как правило, сопровождается обширным выделением углекислот, аммиака, энергии, ядовитых для человека веществ, а также нагреванием субстрата (иногда до самовоспламенения). Поэтому люди научились создавать условия, при которых бактерии гниения утрачивают способность к размножению или просто погибают. К таким предохраняющим продукты мерам можно отнести стерилизацию и пастеризацию, благодаря которым консервация может сохраняться относительно долгое время. Утрачивают свои свойства бактерии и при заморозке продукта. А в древности, когда еще не были известны современные способы, от порчи патогенной микрофлорой продукты предохраняли при помощи высушивания, соления, засахаривания, так как в соленой и сахарной среде микроорганизмы прекращают свою жизнедеятельность, а при сушке удаляется большая часть воды, нужной для размножения бактерий.

Бактерии гниения: значение микроорганизмов в биосфере

Роль бактерий такого рода для всего живого на Земле трудно переоценить. В биосфере, благодаря их аммонифицирующей жизнедеятельности, постоянно идет процесс разложения умерших животных и растений с последующей их минерализацией. Образовавшиеся в результате этого простые вещества и соединения неорганического характера, среди которых углекислый газ, аммиак, сероводород и другие, участвуют в круговороте веществ, служат питанием для растений, замыкают переход энергии от одного представителя флоры и фауны Земли к другому, предоставляя возможность зарождения новой жизни.

Высвобождение азота недоступно для высших растений, и без участия бактерий гниения они не смогли бы полноценно питаться и развиваться.

Бактерии гниения напрямую участвуют в почвообразовательных процессах, разлагая отмершую органику на составные части. Это их свойство играет незаменимую роль в сельском хозяйстве и других видах деятельности человека.

Наконец, без упомянутой жизнедеятельности микроорганизмов поверхность Земли, включая водные пространства, была бы усеяна не разложившимися трупами животных и растений, а их за время существования планеты умерло немалое количество!

Оказывается, у гнилостных бактерий , как вообще у многих бактерий, имеются органы движения, знакомые уже нам жгутики, при посредстве которых они могут самостоятельно передвигаться.

Как ни благодетельствуют нас эти наши друзья, без которых самая жизнь наша была бы невозможна, однако, надо быть с ними настороже; все бактерии коварны. В то время как тело животного только что начало разлагаться и еще нисколько не напоминает собой порченного мяса, в нем могут под влиянием бактерий образоваться страшные яды, унесшие в могилу немало людей, съевших такое ядовитое мясо. Особенно часты случаи отравления так называемым рыбным ядом, который при страшной силе действия на организм, ничем не выдает своего присутствия. При дальнейшем тлении трупов, эти яды сами разлагаются и исчезают.

Животное уже при жизни выбрасывает значительное количество воспринятых питательных элементов в виде кала и мочи. Все эти отбросы также перерабатываются микробами и минерализируются, после чего могут служить пищей для растений. Уже выше было сказано, что в кишечнике человека и животных имеется колоссальное количество бактерий. Они разлагают гнилостными процессами каловые массы уже внутри тела, а затем довершают разложение после того, как они извергнуты наружу.

Когда мы отвозим навоз в поле, мы часто не знаем, что это удобрение становится доступным для наших культурных растений только после переработки его микробами, незаметными кормильцами растений. Значительная часть азота, принятого в пищу животным, выделяется в виде мочи.

Азот - самый ценный для растений элемент, которого они жадно ищут повсюду и с которым обходятся крайне бережно. И вот, азот мочи становится доступным для растений, благодаря особому виду бактерий, производящих брожение мочи, открытое Пастером. Эти оригинальные химики разлагают главную составную часть мочи человека, мочевину, на углекислый газ и аммиак, производя таким образом, ее полную минерализацию. А воспринятый растениями азот аммиака переходит в них в такие питательные вещества, которые поддерживают жизнь животных и человека. Таким образом, бактерии брожения мочи также являются нашими благодетелями.

Безазотистые органические вещества, количество которых особенно велико в растениях, после смерти организма разлагаются прежде всего в громадных количествах в процессах спиртового, молочнокислого и маслянокислого брожения.

Дрожжи, поселяющиеся всегда там, где имеется запас сахара, на оболочках всех плодов, на ягодах винограда и других растений, только и ждут возможности проникнуть внутрь плода и вызвать там массовое разложение сахара с образованием спирта и углекислого газа. Образовавшийся спирт подхватывается сопровождающими дрожжи бактериями уксуснокислого брожения, которые превращают спирт в уксусную кислоту, то есть частично сжигая его. Те же самые бактерии при недостатке спирта действуют дальше и сжигают уксусную кислоту до углекислого газа и воды, но чаще это довершение минерализации сахара производят другие бактерии, не представляющие собой таких узких специалистов как возбудители разных брожений и обеспечивающие себе существование своей неприхотливостью и способностью при дыхании сжигать самое плохое топливо. Совокупность всех только что описанных работ микробов превращает сахар в минеральные продукты - углекислый газ и воду.

Другой путь минерализации безазотистого вещества, имеющий колоссальное распространение в природе, ведет через маслянокислое брожение. Бактерии, производящие это брожение, принадлежат к различным видам.

Поэтому то при брожении виноградного сока можно не прибавлять искусственно дрожжей.

В недрах сырой земли, на дне болот, в топях ила, всюду, куда не проникает живительный луч солнца, где царит мрак и смрад, неустанно работает могучий маслянокислый микроб и количество разложенного им материала значительно превышает те массы растительного происхождения, которые перерабатывает человек в своей технике. Если в искусственной культуре дать микробу хорошо подходящие ему условия, то из сосуда будет течь непрерывная струя газа, результат великолепной химической работы бактерии. Газ состоит из углекислоты и горючего водорода. В несколько минут мы можем набрать полный большой баллон этих газов и в природе такой процесс идет в необъятных размерах, не останавливаясь ни днем, ни ночью. Изумительные работники не знают ни минуты отдыха. Как жалка по своим размерам вся фабрично-заводская техника человечества по сравнению с гигантским размахом химического производства, идущего в природе при содействии различных микробов брожений. II с какой легкостью работают микроорганизмы спиртового и маслянокислого брожений. Как будто ничего не может быть проще превращения сахара и других безазотистых соединений в различные газы и кислоты, или спирты. А между тем, мы, люди, несмотря на все старания, пока еще не в состоянии произвести этих явлений в наших богато обставленных химических лабораториях, хотя бы в малом размере. Мы можем только изумляться…и учиться у бесконечно малых существ. Мы не будем рассматривать здесь всех брожений, число которых весьма велико, мы только познакомимся с парой примеров разрушения крайне прочных веществ, прежде всего с брожением клетчатки. Клетчатка представляет собой вещество, из которого построен остов, скелет растений. Она составляет главную массу тела крупных растений, особенно деревьев и, несомненно, по своей массе стоит на первом месте среди всех горючих органических веществ на земле. В химическом отношении клетчатка замечательна тем, что без нагревания почти не поддается действию самых едких жидкостей и почти ни в чем не растворяется. Даже крепкие кислоты и щелочи не растворяют клетчатки при обыкновенной температуре. Очищенная вата, лучшие сорта пропускной (фильтровальной) бумаги представляют собой почти химически-чистую клетчатку. Бумага непрочна и легко разрывается только потому, что представляет собой войлок тончайших нитей. Если, однако, спаять все эти нити в одну сплошную массу, то получается весьма прочный материал; в Америке такую клетчатку применяют для выделки вагонных шин и других предметов, требующих большой прочности. Древесина представляет собой слегка измененную клетчатку, пропитанную некоторыми веществами, придающими ей большую хрупкость, меньшую гибкость и прочность, но за то также способность всасывать в себя больше воды.

После смерти растения белковые и другие питательные вещества, из которых состоит их живое тело, быстро уничтожаются различными микроорганизмами, а остов, состоящий из клетчатки, остается в течение долгого времени нетронутым, так как вследствие своей прочности легко противостоит натиску мелких живых существ. Всякий, кому приходилось гулять по буковому или дубовому лесу, не мог не обратить внимания на толстый упругий ковер сухих листьев, в которых тонет нога и который накапливается в течение нескольких лет. Это все остовы листьев, состоящие из клетчатки. Однако, с течением времени и клетчатка исчезает, разрушается и переходит в простейшие минеральные соединения. Солома в навозе, также состоящая из клетчатки, при благоприятных условиях также истлевает и уничтожается каким-то способом, который долгое время оставался таинственным. В настоящее время мы знаем, что существуют некоторые бактерии, способные производить брожение клетчатки. Их обнаружить можно так: приготовив раствор необходимых для микробов минеральных солей, прибавляют к нему в качестве питательного материала только нарезанную полосками фильтровальную бумагу и заражают такую жидкость крошечным кусочком навоза. В навозе имеется огромное разнообразие микробов, но почти ни один из них не развивается из-за недостатка пищи. Кормиться одной только бумагой не под силу даже неприхотливым бактериям. Прекрасно чувствуют себя лишь специалисты по сбраживанию клетчатки; они разъедают бумагу и производят брожение, с выделением газов, от которых бумага всплывает на поверхность, увлекаемая током пузырьков. Этот процесс имеет, конечно, колоссальное значение в круговороте веществ: благодаря ему органическое вещество, находившееся в огромном количестве в форме, недоступной для обыкновенных живых существ, минерализируется и снова становится им доступно.

Какова же должна быть мощность тех химических средств, которыми располагают удивительные микробы, так легко и бурно разлагающие такой прочный материал! Еще один случай, наводящий химика на глубокие размышления о том, как бы выведать у бесконечно малых их секрет и применить его в широких размерах на пользу науки и техники.

Существуют в природе и другие способы массовой переработки клетчатки, а также иных близких к ней веществ. При этом происходит как бы медленное тление, сопровождаемое обугливанием. Так накопились огромные массы торфа и каменного угля, фундамент современной техники. Когда эти залежи будут истреблены, промышленность должна будет либо сойти на нет, либо обратиться за помощью к науке, в поисках нового источника энергии. И, по всем видимостям, такой момент должен в конце концов наступить.

Само собой разумеется, что работа всех описанных микроорганизмов, вызывающих брожения, полезна человеку только по случайному совпадению. По существу бактерии направляют свою деятельность на разложение веществ сложного состава, из которых образуются более простые. Это и составляет общий принцип, их деятельности. В некоторых отдельных случаях такое разложение вещества может быть, наоборот, вредно для человека потому, что оно разрушает продукты его техники. Так, например, уксуснокислое брожение может причинить большие убытки, если оно разовьется само собой в ценных напитках, содержащих спирт. Маслянокислое брожение, столь необходимое в природе, весьма нежелательно в том случае, если оно разойдется в пищевых продуктах.

Всегда вредна и нежелательна для человека деятельность некоторых грибков, разрушающих древесину. Из них особой известностью пользуется один вид так называемого домового гриба. Он превращает постройки, особенно сооруженные из сырого дерева, в мягкую труху; это явление сопряжено с растворением клетчатки, которое гриб производит, повидимому, с большой легкостью, так же, как бактерии, с которыми мы только что познакомились, но никакого брожения клетчатки с выделением газов домовый гриб, повидимому, не вызывает. Вследствие тайной работы этого неустанного вредителя, разрушено много деревянных домов и других построек.

Брожение селитры представляет собой очень нежелательное и невыгодное для земледельца явление. Азот в почве часто находится в недостаточном количестве, а потому земледельцу приходится дорожить им больше, чем всеми другими питательными элементами в земле; урожай главным образом зависит от азотного питания растений. Из всех форм, в которых может оказаться азот в почве, наиболее пригодна для растений селитра; не даром ее привозят в огромных количествах из Южной Америки и употребляют в качестве удобрения. Целый ряд бактерий разлагает в почве селитру, пользуясь этим процессом для добывания жизненной энергии. При бактериальном брожении селитры весь азот улетает в воздух и становится недоступным для растении. Таким образом, коварный микроб не только лишает азотного питания другие более высоко организованные растения, но при этом и сам то азотом селитры не пользуется, а только уменьшает и без того небольшие запасы полезного азота в почве.

Все микроорганизмы, вызывающие брожения, почти никогда не производят полной минерализации органического вещества. Они ограничиваются тем, что более сложно составленные соединения разлагают на более простые. Но целая армия других микробов сразу же нападает на продукты брожения и довершает превращение их в простейшие, так называемые минеральные вещества, уже не способные дальше разлагаться с выделением тепла. Все эти организмы, сопровождающие бродильных микробов на подобие того, как шакалы следуют за львом, чтобы доедать остатки его трапезы, чаще всего бывают неприхотливы и неразборчивы в выборе питания. Они не производят строго-специализированных брожений, но они сжигают при своем дыхании разнообразные вещества, на которые среди более разборчивых организмов нашлось бы мало охотников. В общей работе минерализации сложных веществ они играют не показную роль, но они совершенно необходимы для завершения этого важного процесса.

Однако и среди таких микробов, которые производят не брожения, а сжигания простых соединений, встречаются некоторые узкие специалисты, работа которых незаменима и бросается в глаза своей оригинальностью. Чудеса, открытые микробиологией, были бы недостаточно описаны, если бы мы не обратили наше внимание на подобного рода работников, которым мы в первую голову обязаны обеспечением постоянства жизни на земле.

С тех пор, как великий французский химик Лавуазье открыл закон вечности материи, мы знаем, что количество каждого основного простейшего вещества на нашей планете неизменно и определенно. Поэтому, если такое вещество необходимо для построения тела животных и растений, оно неизбежно должно после смерти этих живых существ переходить в такую форму, в которой может быть снова использовано растениями в качестве питательного материала. От растений оно с пищей будет передано животным, после смерти как тех, так и других организмов снова попадет в почву и будет непрерывно совершать все тот же круговорот. Таким образом, ограниченное, строго определенное количество одного физиологически-важного элемента, благодаря круговороту, может поддерживать жизнь животных и растений в течение бесконечно долгого времени, на подобие того, как ограниченное количество денежных знаков при непрерывном круговороте их из казны в частные руки и обратно, может в течение неопределенно долгого времени поддерживать товарообмен в государстве.

При развитии в воде бактерий наблюдаются гнилостные, землистые, затхлые, ароматические (приятные и неприятные) кислые, сходные с запахом бензина, спирта, аммиака и другие запахи.[ ...]

Среда Бейеринка для гнилостных бактерий, образующих сероводород.[ ...]

Содержащиеся в подземных водах бактерии выполняют большую геохимическую работу, видоизменяя химический и газовый состав вод. Следует подчеркнуть, что многие развивающиеся в подземных водах бактерии являются безвредными для здоровья человека и даже участвуют в бактериальной очистке вод от загрязнения.[ ...]

Слизистый бактериоз. Возбудители - гнилостные бактерии рода Erwinia, в основном Е. carotovora (Jones) Holland и различные ее формы - Е. carotovora var. carotovora (Jones) Dye, E. carotovora var. atroseptica (van Hall) Dye, E. carotovora var. carotovora (Jones) Dye, биотип aroideae (Towns) Holland.[ ...]

Чрезвычайно важно знать и учитывать, что бактерии сохраняют свою жизнеспособность при анаэробных (гнилостных) процессах очень долгое время. При аэробном же процессе, при окислении органических веществ значительная часть болезнетворных бактерий погибает вследствие уменьшения необходимой для них питательной среды.[ ...]

Кислая среда (pH [ ...]

В практике было отмечено, что общее число бактерий значительно снижается в процессе отстаивания воды. Чем более загрязнена вода, тем. быстрее погибают в ней патогенные микробы. Это парадоксальное явление объясняется антагонизмом микробов. Снижение количества микробов наблюдается при отстаивании в течение первых двух дней: а затем в отстойниках вырастают водоросли, которые при отмирании разлагаются гнилостными микроорганизмами. В результате ухудшаются органолептические показатели воды, исчезает растворенный кислород, падает окислительный потенциал.[ ...]

Соляная кислота может подавлять развитие гнилостных и масляно-кислых бактерий в корме. Поскольку наиболее доступным источником азота для микроорганизмов является аммиак, то в консервируемых кормах происходит быстрое накопление соляной кислоты. При значении pH среды ниже 3,9-4,0 практически полностью прекращаются процессы биоразложения, и можно быстро достичь эффекта консервации кормов. Роль соляной кислоты не ограничивается только подавлением биологических процессов, происходящих в кормах. Она катализирует процессы гидролиза органических продуктов, в том числе и целлюлозы. Это позволило значительно повысить качество силоса и продуктивность крупного рогатого скота.[ ...]

Бактериоз чеснока (рис. 76). Вызывается несколькими видами бактерий, наибольшее значение из которых имеют Erwinia caroto-vora (Jones) Holland и Pseudomonas xanthochlora (Schuster) Slapp. На зубках чеснока в период хранения появляются углубленные коричневые язвочки или полости, идущие от допца вверх. Ткани пораженного зубка приобретают перламутрово-желтую окраску, становятся как бы подмороженными. Чеснок имеет типичный гнилостный запах.[ ...]

Протеазы - расщепляющие белковую молекулу, эти ферменты выделяются многими гнилостными бактериями.[ ...]

Взаимоотношения симбиотического характера проявляются также между некоторыми формами молочнокислых бактерий, дрожжей и гнилостных бактерий (при производстве кефира).[ ...]

Химические элементы и соединения, содержащиеся в атмосфере, поглощают часть соединений серы, азота, углерода. Гнилостные бактерии, содержащиеся в почве, разлагают органические остатки, возвращая СОг в атмосферу. На рис. 5.2 приведена схема загрязнения среды канцерогенными полициклическими ароматическими углеводородами, содержащимися в выбросах транспортных средств, объектов транспортной инфраструктуры, и ее очищения от данных веществ в компонентах окружающей среды.[ ...]

При брожении происходит частичное выпадение хлопьев белковых веществ. Однако кислая реакция и наличие молочнокислых бактерий препятствуют развитию гнилостных бактерий, способствующих дальнейшему процессу распада веществ. Только после нейтрализации образовавшихся кислот сточные воды могут быть подвергнуты процессу гниения. Для сохранения тепла сточных вод необходимо предусмотреть отепленное помещение.[ ...]

Назначение дезинфекции. Введение дезинфицирующего вещества в воду полностью обеспечивает отсутствие в питьевой воде гнилостных и патогенных бактерий в соответствии с официальными стандартами и исследованиями на Escherichia coli, фекальные стрептококки и сульфитвосстанавливающие Clostridium.[ ...]

В практике большое значение имеет "биохимический распад белков. Процесс распада белков или их производных под влиянием гнилостных бактерий называется гниением. Процессы гниения могут происходить аэробно и анаэробно. Гниение сопровождается выделением резко пахнущих веществ: аммиака, сероводорода, скатола, индола, меркаптанов и др.[ ...]

После выкашивания водоем нужно заново заполнить водой и некоторое время контролировать с целью выявления момента прекращения гнилостных процессов (определения кислорода, углекислоты, окисляемости, аммиака, нитратов, учет численности бактерий-сапрофитов). Опыт можно начинать только после возвращения гидрохимических и микробиологических показателей к норме.[ ...]

Кожевенное производство требует мягкой воды, так как соли, обусловливающие жесткость, ухудшают использование дубильных веществ. Гнилостные бактерии и грибы уменьшают прочность кожи, поэтому присутствие их в воде, идущей для кожевенного производства, недопустимо.[ ...]

Детритофаги, или сапрофаги, - организмы, питающиеся мертвым органическим веществом - остатками растений и животных. Это различные гнилостные бактерии, грибы, черви, личинки насекомых, жуки-копрофаги и другие животные - все они выполняют функцию очищения экосистем. Детритофаги участвуют в образовании почвы, торфа, донных отложений водоемов.[ ...]

Цианэтилированный хлопок обладает высокой гнило- и плесе-нестойкостью. При выдерживании в течение очень длительного времени в почве, зараженной бактериями, вызывающими гниение целлюлозы, этот продукт полностью сохраняет прочность (а в некоторых случаях наблюдалось даже некоторое ее повышение). Циан-этилпрованные хлопок и манильская пенька также не подвергаются гниению, длительно находясь в воде . Гнилостойкость возрастает с увеличением содержания азота и становится абсолютной, когда оно достигает 2,8-3,5%. Однако присутствие даже незначительных количеств карбоксильных групп (образующихся в результате омыления цианэтильных групп) отрицательно сказывается на устойчивости целлюлозных материалов к действию гнилостных бактерий. Поэтому очень важно проводить цианэтилирование в наиболее мягких условиях. Следует также уменьшать интенсивность щелочных обработок или совсем избегать их при промывке, отбелке и крашении цианэтилированного хлопка .[ ...]

Типичное молочнокислое брожение широко применяется для изготовления молочнокислых продуктов на молочных заводах. Большое значение молочнокислые бактерии имеют в консервировании свежих кормов путем силосования- Консервирование сочной кормовой массы основано на сбраживании сахаров, содержащихся в растительном соке с образованием молочной кислоты. Благодаря кислой реакции среды предотвращается развитие гнилостных процессов в силосуемой массе. В последние годы разработаны силосные закваски из молочнокислых бактерий. Применение этих заквасок позволяет ускорить и улучшить процесс созревания силоса, избежать образования масляной кислоты.[ ...]

Для кожевенного производства необходима мягкая вода! так как соли жесткости ухудшают использование дубильных веществ. В воде должны отсутствовать гнилостные бактерии и грибки, уменьшающие прочность кожи.[ ...]

Всем известна субстратная специфичность микроорганизмов по отношению к природным источникам питания. Так, например, разложение белковых веществ осуществляется гнилостными бактериями, которые, однако, не способны конкурировать с дрожжами в ассимиляции углеводов. Многие микробы характеризуются особенной приверженностью к определенному субстрату, и некоторые из них даже получили соответствующие названия, как то - целлюлозоразлагающие бактерии. Это свойство микроорганизмов издавна используется на практике. Даже одно и то же органическое вещество атакуется различными группами микроорганизмов по-разному. Это особенно четко было показано в связи с микробной трансформацией стероидов. Г. К. Скрябин с сотрудниками приводит множество примеров высокой химической специализации микроорганизмов и даже использует это свойство как таксономический признак . Нами на примере сердечных гликозидов отмечено, что грибы рода Aspergillus вводят гидроксильную группу преимущественно в 7р-положение стероидного ядра, в то время как фузарии предпочитают окислять 12ß-ynnepoflHbifl атом . При микробной деструкции синтетических органических веществ наблюдается аналогичное явление . Установлено, что обработка такой разнородной популяции, как почва или активный ил, например, нитро- и динитрофенолами приводит к заметному обогащению ее видами Achromobacter, Alcaligenes и Flavobacterium, тогда как прибавление тиогликолана увеличивает относительное содержание Aeromonas и Vibrio . Совершенно очевидно, что для успешного разрушения тех или иных синтетических органических веществ необходимо подбирать соответствующие микроорганизмы.[ ...]

Сточная вода без доступа воздуха начинает бродить в тех случаях, когда она содержит преимущественно легко разлагаемые углеводы, свободные от азота. Брожение вызывается бактериями. При этом наряду с углекислотой образуются органические кислоты, которые снижают pH до 3-2. Это мешает работе гнилостных бактерий даже в присутствии азотсодержащих соединений (белков).[ ...]

При наличии в основании свалки водонепроницаемого грунта свалка загрязняет грунтовые воды и окружающую местность выделяющейся из нее жидкостью, которая содержит продукты гнилостного распада органических веществ мусора. Средние значения загрязнения стока из свалки по общему числу бактерий подобны средним значениям для сточных вод городской канализации, а по коли-индексу даже превышают их в 2-3 раза.[ ...]

Двухъярусные отстойники применяют обычно для небольших и средних очистных станций производительностью до 10 тыс. м3/сутки. Осадок, выпавший в иловую камеру, сбраживается под влиянием гнилостных анаэробных бактерий, которые расщепляют сложные органические вещества (жиры, белки, углеводы) первоначально до кислот жирного ряда, а,в дальнейшем разрушают их до конечных, более простых продуктов: газов метана, углекислоты и частично сероводорода. Сероводород при щелочном б,рожении связывается в растворе с железом, образуя сернистое железо, окрашивающее осадок в черный цвет.[ ...]

При определении санитарно-показательных клостри-дий особое внимание следует обратить на температуру инкубации. В летний период при 37°С на среде Вильсона- Блера вырастает до 90-99% черных колоний, образованных гнилостными анаэробными палочками и кокками, не являющимися показателями фекального загрязнения водоемов (Т. 3. Артемова, 1973). Совместный учет этих сапрофитных бактерий с кло.стридиями значительно искажает результаты, показатель теряет индикаторное значение при оценке качества воды водоемов и питьевой воды. Вполне возможно, что отрицательное отношение к клостридиям как санитарно-показательным организмам подкреплялось данными неточных методов исследования.[ ...]

Стабилизация производится с целью предотвращения загнивания осадков для облегчения их захоронения или утилизации. Сущность стабилизации осадков заключается в изменении их физико-химических характеристик, при которых происходит подавление жизнедеятельности гнилостных бактерий.[ ...]

На содержание кислорода в воде влияет загрязненность ее органическими веществами, на окисление которых расходуется значительное количество кислорода, вследствие чего снижается его концентрация. Слизь, выделяемая некоторыми рыбами в воду, служит хорошим субстратом для гнилостных бактерий, большинство которых потребляет кислород, снижая тем самым его содержание в воде, что особенно опасно при высокой плотности посадки и тем более летом, при массовом развитии гнилостных бактерий. Поэтому при летних перевозках рекомендуется менять воду в транспортной таре не реже раза в сутки и поддерживать более низкую температуру воды, что замедлит развитие гнилостных бактерий. При осенне-зимних перевозках живой рыбы ежесуточная смена воды необязательна.[ ...]

Распад основных органических компонентов осадка - белка, жиров, углеводов - происходит с различной интенсивностью, в зависимости от преобладающей формы тех или иных микроорганизмов. Так, например, для септиков характерна обстановка, создающая условия для развития анаэробных гнилостных бактерий первой стадии (фазы) разложения органических веществ.[ ...]

Жизнедеятельность микроорганизмов создает помехи в работе очистных сооружений, которые состоят в появлении привкусов и запахов у воды. Химический состав соединений, обусловливающий появление запаха, зависит от вида микроорганизма, условий его жизнедеятельности. Так, актиномицеты в условиях затрудненной аэрации придают воде землистый запах. Запах воды может вызываться также массовым развитием бактерий. В зависимости от образующихся метаболитов запахи могут быть также различными: ароматический, сероводородный, плесневый, гнилостный. В период массового развития микроорганизмов-продуцентов запахов и привкусов мясо рыб также приобретает привкус. Основная роль в возникновении запахов воды принадлежит аминам, органическим кислотам, фенолам, эфирам, альдегидам, кетонам. Для удаления запахов и привкусов, вызываемых микроорганизмами, необходимо применение дополнительных методов очистки воды.[ ...]

Фосфор - важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит эвтрофикация водного объекта, сопровождающаяся перестройкой всего водного сообщества и ведущая к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, концентрации бактерий, снижению концентрации растворенного кислорода и пр.).[ ...]

В зависимости от расхода сточных вод, технологической схемы их очистки и обработки осадка, гидравлической крупности взвешенных веществ применяют различные типы песколовок: горизонтальные (с прямолинейным и круговыми движениями воды, с различными способами удаления песко-пульпы), тангенциальные, аэрируемые, реже вертикальные. В песколовках осаждается 0,02-0,03 л/сут. минеральных веществ в расчете на 1 жителя зольностью 60-95% и влажностью 30-50%. При зольности менее 80% на песке имеются жировые и масляные остатки, которые могут стать средой для гнилостных бактерий, для развития личинок мух, что приводит к загрязнению окружающей среды. Во избежание этого рекомендуется рецикл Песковой пульпы или ее аэрация (по аналогии с аэрируемой песколовкой). В песколовках выделяется до 95% минеральных частиц из сточных вод.[ ...]

Синезеленые водоросли наиболее интенсивно развиваются в застойных водоемах с теплой водой. Особенно больших масштабов их развитие достигло в водохранилищах, относящихся к озерному типу с водообменом 2 ... 4 раза в год. При этом продукты их распада становятся источником загрязнения воды. В результате экранирующего действия пятен цветения (затенения) подавляются процессы фотосинтеза в толще воды, что- сопровождается гибелью кормовых организмов и замором рыб. При этом гибнет в основном молодь окуневых рыб (судак, окунь, ерш).[ ...]

В начале нашего века возникла микробиологическая теория старения, творцом которой был И. И. Мечников, который различал физиологическую старость и патологическую. Он считал, что старость человека является патологической, т. е. преждевременной. Основу представлений И. И. Мечникова составляло учение об ортобиозе (Orthos - правильный, bios - жизнь), в соответствии с которым основной причиной старения является повреждение нервных клеток продуктами интоксикации, образующимися в результате гниения в толстом кишечнике. Развивая учение о нормальном образе жизни (соблюдение правил гигиены, регулярный труд, воздержание от вредных привычек), И. И. Мечников предлагал также способ подавления гнилостных бактерий кишечника путем употребления кисломолочных продуктов.[ ...]

Проведена сравнительная оценка унифицированного метода, в котором используют железо-сульфитную среду Вильсона - Блера без антибиотиков и температуру инкубации 37°С, и нашей модификации с использованием элективной модифицированной среды СПИ и температуры инкубации 44-45°С. После подсчета черных колоний, вырастающих в том и другом случае, каждую из них идентифицировали по реакции на лакмусовом молоке, по спорообразованию и морфологии клеток. Сравнительная оценка методов выполнена при исследовании воды водоема в процессе самоочищения и на этапах очистки питьевой воды по сезонам года. В зимний период существенной разницы между индексами клостридий, определенных изучаемыми методами, не получено. В летний период черные колонии, вырастающие при 37°С, на 90- 99% состоят из гнилостных анаэробных палочек и кокков, редуцирующих сульфит, не являющихся прямыми показателями фекального загрязнения. Совместный учет этих сапрофитных бактерий с клостридиями значительно искажает результаты, вследствие чего эта группа теряет санитарно-показательное значение.[ ...]

Производительность септиков зависит не столько от их формы (круглой или прямоугольной), сколько от некоторых деталей их конструкции. Отверстия для впуска и выпуска воды должны располагаться как можно дальше друг от друга во избежание гидравлического короткого замыкания. Этой цели в известной степени служит разделение больших септиков на отдельные камеры. При надлежащей организации протока можно исключить образование застойных зон, слабо участвующих в процессе обмена воды. Септик рассчитьвается по глубине таким образом, чтобы между донным осадком и слоем плавающего ила находился слой воды толщиной около 1 м. В этом пространстве происходят необходимые перемещения сбраживаемого содержимого септика, благодаря чему вновь поступившая сточная вода может хорошо заражаться гнилостными бактериями. Отсюда минимальная полезная высота принимается равной 1,2 м. Если заполнение септика намечается на высоту более 2 м, следует предусматривать отклонение потока по вертикали. Осевший и плавающий ил не должны вытекать вместе с водой через отверстия, устроенные в стенках камер, и через сток из септика. Эти требования по притоку и отводу, а также относительно связи между камерами могут быть обеспечены разнообразными способами, поэтому здесь трудно рекомендовать какую-либо определенную конструкцию.[ ...]

Оштукатуривание стенок даже с применением штукатурного раствора с большим содержанием цемента не может быть рекомендовано, так как оно не обеспечивает водонепроницаемости. При проникании агрессивных сточных вод в штукатурку последняя довольно быстро разрушается, а затем агрессивному воздействию подвергаются незащищенные участки стен. Поэтому целесообразнее покрывать стены септика битумными эмульсиями. Эти эмульсии следует наносить на совершенно сухую поверхность бетона или раствора. Для эффективного уплотнения поверхности необходимо предусматривать многослойное покрытие; первый слой выполняется из наносимого в холодном состоянии жидкого битумного раствора, поверх которого затем наносится слой горячего битума. Устройство дегтевых покрытий является нецелесообразным, так как некоторые составные части дегтя, попадая в раствор, могут вызвать гибель гнилостных бактерий.