Производственные канцерогенные факторы. Канцерогенные вещества

Канцерогены – это определенные факторы, под действием которых у человека повышается вероятность образования злокачественных опухолей . Скорость развития патологического процесса зависит от состояния здоровья людей, длительности воздействия органических и неорганических веществ или ионизирующего излучения. Канцерогены в небольшом количестве содержатся в продуктах питания и бытовой химии, они входят в состав некоторых фармакологических препаратов. Полностью обезопасить себя и близких от соединений, провоцирующих развитие рака, не получится. Но сократить количество канцерогенов в окружающей среде, а также минимизировать последствия от контакта с ними вполне возможно.

Классификация канцерогенов

В список канцерогенов входит несколько тысяч веществ химического и органического происхождения. Ученым не удалось собрать их в одной классификации из-за отсутствия объединяющего признака. Канцерогены систематизировали следующим образом:

  • по степени действия на организм человека: явно канцерогенные, слабо канцерогенные, канцерогенные;
  • по опасности развития онкологии: соединения, которые получены на определенных стадиях технологических процессов с высокой, средней и низкой вероятностью образования раковых опухолей, а также вещества, чьи канцерогенные свойства поставлены под сомнение;
  • по возможности формирования нескольких опухолей: под действием химических соединений злокачественное новообразование развивается на каком-либо конкретном органе или на различных участках тела человека ;
  • по времени формирования опухоли: канцерогены с локальным, отдаленно-селективным, системным воздействием;
  • по происхождению: канцерогенные вещества, которые выработались в организме человека или проникшие в него из окружающего пространства/

Классификация химических веществ проводится также по характеру вызванного ими патологического процесса. Один вид канцерогенов изменяет генную структуру клетки, другие – не воздействуют на организм на генном уровне, провоцируют рост опухоли другими способами. Соединения, влияющие на ДНК, особенно опасны – нарушается естественное отмирание клеток, они начинают бесконтрольно делиться . Если этот патологический процесс затрагивает здоровые ткани, то у человека впоследствии диагностируется доброкачественная опухоль. Но при делении дефектных, поврежденных клеток велика вероятность появления злокачественной опухоли.

Виды канцерогенов

Канцерогенные вещества – это не только химические соединения, которые производят различные отрасли промышленности. Они содержатся в продуктах питания, растениях, их продуцируют вирусы и бактерии . Длительное воздействие опасных для организма веществ приводит к образованию опухолей не только у человека, но и у животных.

Канцерогены входят в состав природных веществ, которые при правильном употреблении очень полезны для здоровья. Но стоит превысить рекомендованную доктором дозировку или срок лечения, как сразу создается благоприятная обстановка для деления раковых клеток. К таким соединениям относится всем известный березовый деготь , широко используемый в народной медицине.

Чтобы хорошо ориентироваться в видах канцерогенов, следует понять, чем опасны эти соединения. В первую очередь нужно обратить внимание на пищевые добавки, лекарственные средства, инсектициды и ускорители роста растений . То есть на то, без чего трудно представить жизнь современного человека.

Природные канцерогены

Этот термин объединяет факторы и опасные вещества, которые всегда находятся в окружающей среде. На их появление никоим образом не оказывал влияние человек. Основная причина большинства диагностируемых случаев рака кожи – солнечная радиация, или ультрафиолетовое излучение . Врачи не устают предупреждать о вреде загара. Стремясь обзавестись красивым шоколадным оттенком кожи, женщины и мужчины проводят много времени на пляже или в солярии. Под воздействием солнечных лучей во всех слоях эпидермиса может запуститься патологический процесс деления клеток с измененной генной структурой.

У любителей загара вероятность развития раковой опухоли выше в 5-6 раз. Особенно осторожными должны быть люди со светлой кожей, проживающие в северных широтах.

К самым опасным для организма человека соединениям относится радон . Это инертный газ, содержащийся в земной коре и строительных материалах. Риск развития раковых опухолей выше у людей, которые проживают на первых этажах высотных домов. Значительное содержание радона отмечено специалистами в домах, расположенных в сельской местности. В таких зданиях есть подпол или погреб, то есть отсутствует защита от инертного газа. Радон также находится:

  • в водопроводной воде, которая поступает из артезианской скважины, расположенной на участке земли с высоким содержанием радона;
  • в природном газе, сжигаемом для отопления помещений или приготовления пищи.

Если в доме или квартире плохая герметизация и отсутствует вентиляция, то концентрация радона в окружающем пространстве высока. Такая ситуация характерна для северных широт, где отопительный сезон длится большую часть года.

Канцерогенное действие на организм человека оказывают:

  • гормоны, продуцируемые железами внутренней секреции: пролактин и эстрогены;
  • тирозин, триптофан, желчные кислоты, которые находятся в виде метаболитов;
  • полициклические ароматические углеводороды, содержащиеся в буром и каменном угле или образующиеся при горении лесов.

К биологическим соединениям, чье канцерогенное воздействие пока изучается, специалисты относят некоторые вирусы. Они становятся причиной развития тяжелых заболеваний печени – гепатита B и С.

Бактерия Helicobacter pylori непосредственно не может оказывать влияния на формирование раковой опухоли. Но она способна спровоцировать язву желудка и двенадцатиперстной кишки, эрозивный и хронический гастрит. Медики относят эти заболевания к предраковым состояниям.

Антропогенные канцерогены

Появление этого вида опасных веществ в окружающей среде стало результатом действий человека. В эту категорию включены следующие канцерогенные факторы:

  • соединения, входящие в состав угарного и выхлопного газа, а также содержащиеся в бытовой или производственной саже ;
  • полициклические ароматические углеводороды, выделяющиеся при сжигании нефтепродуктов, каменного угля, мусорных отходов;
  • продукты, остающиеся после переработки древесины или нефти;
  • формальдегидные смолы, которые содержит смог больших городов.

Для организма человека крайне опасно ионизирующее излучение . Даже в малых дозах этот канцерогенный фактор вызывает у человека лучевую болезнь, становится причиной радиационного ожога. В зависимости от их вида лучи проникают в различные слои эпидермиса и провоцируют изменения на клеточном уровне. Источники ионизирующего излучения могут попадать в организм с продуктами питания или при вдыхании. Смертельно опасны для человека гамма-лучи, от которых может защитить только толстый слой бетона или цемент.

Продукты, вызывающие рак

Многие люди при посещении магазинов внимательно читают надписи на этикетках, пытаясь оценить канцерогенный эффект продуктов. Но производители тщательно скрывают пищевые добавки, которые могут стать причиной раковой опухоли. Непонятные заглавные буквы с цифровыми обозначениями остаются тайной для обычного покупателя. Именно так кодируются соединения, которые увеличивают срок годности продуктов, улучшают их внешний вид и вкус. Покупатель, конечно, догадывается, что натуральное молоко не может храниться месяцами. Но найти ему замену на прилавке супермаркетов довольно проблематично – пищевые добавки есть во всех молочных или кисломолочных продуктах .

Значительное количество нитрозаминов входит в состав колбасных изделий и мясных продуктов. Именно нитриты придают им аппетитную розовую окраску, обеспечивают длительный срок хранения. Эти химические соединения при непосредственном воздействии на слизистую оболочку желудочно-кишечного тракта могут спровоцировать образование раковой опухоли.

Следует иметь в виду, что, несмотря на недоказанную канцерогенность для человека, некоторые пищевые добавки вызывали злокачественные новообразования у животных. Это широко известные и часто используемые сахарин и цикламат. При покупке стоит обращать внимание на содержание этих подсластителей в творожках и йогуртах.

Даже полезные продукты станут канцерогенными, если их пожарить в большом количестве любого растительного масла. В хрустящей поджаристой корочке обнаруживаются токсичные соединения:

  • акриламид;
  • метаболиты жирных кислот;
  • различные альдегиды;
  • бензапирен.

Воздействие канцерогенов на организм человека тем сильнее, чем дольше находился продукт в масле . Это относится не только к обычной жареной картошке. Токсичные соединения содержатся:

  • в пирожках и пончиках;
  • в картофельных чипсах;
  • в мясе, запеченном на угле.

Некоторые кафе и закусочные пренебрегают установленными законодательством нормами и не меняют масло перед приготовлением следующей порции продуктов. В таких чебуреках и пирожках концентрация канцерогенов настолько высока, что может нанести серьезный вред здоровью.

Кофе, без которого многие люди не представляют свою жизнь, содержит вещество акриламид. Специалисты не смогли подтвердить вероятность формирования опухолей при употреблении кофе. Но наличие в его составе канцерогена акриламида не позволяет опровергнуть такую возможность. Поэтому следует ограничить количество чашек кофе до 4-5 в день.

Канцерогены в продуктах питания находятся не только в качестве пищевых добавок, они могут там со временем образовываться. Особо опасен для организма человека афлатоксин. Его продуцируют плесневые грибки, споры которых можно обнаружить в злаках, отрубях, орехах и муке. Продукты с афлатоксином легко определить по несвойственному им горькому вкусу. Канцероген не разрушается при термической обработке и в больших дозах часто становится причиной гибели животных. У человека афлатоксин может спровоцировать злокачественную опухоль печени.

Самые опасные канцерогены

В окружающей среде находится множество соединений, которые оказывают негативное воздействие на организм человека. Но особую опасность представляют вещества, с которыми человек сталкивается в быту и на производстве. Вот список канцерогенов:

  • Асбест. Тонковолокнистый минерал из группы силикатов часто используется при проведении строительных работ. Если асбест применялся при возведении жилых помещений, то в их воздушном пространстве могут находиться тончайшие волокна. Этот канцероген после проникновения в организм становится причиной формирования злокачественных новообразований легких, гортани и желудка .
  • Винилхлорид. Содержится во многих сортах пластмасса, которые используются в медицине. Из него изготавливают товары широкого потребления. Опухоли легких и печени довольно часто диагностируются у работников таких предприятий.
  • Бензол. Соединение при продолжительном контакте провоцирует образование лейкозов.
  • Мышьяк, никель, хром, кадмий. Производные этих соединений содержатся в выхлопных газах. Канцерогены способствуют возникновению рака предстательной железы и мочевого пузыря.

Интересный факт: если картофель хранится в гараже, то он поглощает канцерогены из выхлопных газов . В медицинской литературе описаны случаи диагностирования рака прямой кишки из-за употребления кусков газет в качестве туалетной бумаги.

Как избавиться от канцерогенов

Вывести канцерогены из организма помогут обычные продукты питания. Они свяжут опасные соединения с помощью химических реакций или просто абсорбируют их на своей поверхности. К таким продуктам относятся:

  • капуста, морковь, свекла и свежевыжатые соки из этих овощей;
  • крупяные каши: гречневая, овсяная, рисовая ;
  • зеленый чай, кисломолочные продукты;
  • компот из сухофруктов.

Следует включить каши и овощи в свой ежедневный рацион. Они не только способны выводить канцерогены, но и являются отличным профилактическим средством от формирования злокачественных новообразований. Очистить желудочно-кишечный трак от накопившихся на его слизистой оболочке канцерогенов можно с помощью абсорбентов и энтеросорбентов (активированный уголь, полисорб, смекта, лактофильтрум). Курсовой прием этих фармакологических препаратов значительно снизит негативное воздействие опасных веществ на организм человека.

канцерогены вредны для организма

О канцерогенах сейчас говорят повсюду. В онкологии даже есть целый раздел, посвящённый взаимосвязи воздействия канцерогенных веществ и возникновения опухолей. Само название «канцерогены» говорит само за себя. Это вещества, вызывающие рак и другие новообразования.

Как образуются канцерогены? Где в повседневной жизни человек может с ними встретиться? Какие канцерогены являются самыми вредными и как обезопасить себя от их пагубного воздействия?

Описание канцерогенов

Канцерогены - это природные или созданные человеком вещества, которые могут в определённых условиях вызывать образование опухолей. Эти агенты могут индуцировать рак не только у человека, но и у животных. Природа канцерогенов может быть различна. Это не только химические соединения, как многие ошибочно думают. Биологические и физические объекты тоже считаются канцерогенами, если способны приводить к раку. Химические канцерогены являются наиболее распространёнными.

К биологическим канцерогенам можно отнести вирус гепатита B, Эпштейна-Барра или папилломавирус. Физическими канцерогенами являются ионизирующее и ультрафиолетовое излучения, рентгеновские и гамма-лучи.

эти продукты содержат канцерогены

Химические канцерогены относятся к веществам различных видов. По химическому строению они делятся на следующие виды:

  • полициклические ароматические углеводороды;
  • азотсодержащие ароматические вещества;
  • металлы и соли неорганического происхождения;
  • аминосоединения;
  • нитрозосоединения и нитрамины.

Классификация по характеру воздействия на организм выделяет:


Канцерогенным эффектом при воздействии на человека обладают следующие химические вещества:

Канцерогенные вещества образуются не только в процессе деятельности человека, но и в природе.

Где можно столкнуться с канцерогенами

Подвергнуться воздействию канцерогенов можно не только в производственных условиях, но и в быту. Где содержатся канцерогены? Многие из них образуются в результате деятельности человека, а некоторые производит сама природа. Городской воздух, а сейчас и не только городской, насыщен канцерогенами. При сжигании бытового мусора образуются диоксины, бензол и другие циклические углеводороды, формальдегид.

Канцерогенным веществом табачного дыма является бензапирен. Какие ещё канцерогены содержатся в табачном дыме? - мышьяк, радиоактивный полоний и радий. Винилхлорид, который также был обнаружен в сигаретах, обладает не только канцерогенным, но и тератогенным (вредным для плода) и мутагенным действиями. Бездымные табачные продукты, такие как нюхательный табак или жевательные табачные смеси, содержат известь, которая также может вызывать рак.

Алкогольные продукты также могут вызывать рак. Доказано, что ацетальдегид, образующийся в результате переработки этанола, способен вызывать повреждение ДНК. У людей, часто употребляющих алкоголь, заболеваемость раком пищевода, глотки и ротовой полости достоверно выше.

В быту с канцерогенами можно столкнуться при готовке продуктов. При жарке канцерогены образуются не только в результате перекаливания масла, но и при чрезмерном нагревании тефлоновых ёмкостей или их повреждении.

проверка фруктов и овощей на содержание нитратов

В настоящее время количество продуктов, содержащих различные добавки, такие как ароматизаторы, красители, усилители вкуса и т. д., превышает натуральные. А овощи и фрукты, продающиеся в супермаркетах и на рынках напичканы нитратами. Кроме того, все растения способны впитывать и накапливать вредные вещества из окружающей среды. Орехи и зерновые культуры также могут таить в себе опасность. Не всегда известно в каких условиях они хранились и не содержат ли эти продукты афлатоксин, который смертельно опасен для человеческого организма. Канцерогенные продукты запрещены требованиями СанПиН, но производители зачастую идут на различные хитрости, используя неполное название вредного вещества в составе или просто его не указывая.

Все используют лекарства. Но не каждый знает, что некоторые из них содержат канцерогены. Вот список лекарств, содержащих канцерогенные вещества:

Промышленные канцерогены выделяются в результате производственных процессов. Они попадают в воздух, воду, а также воздействуют непосредственно на людей, работающих с ними. Какие предприятия могут подвергать работников контакту с канцерогенами?

  1. Деревообрабатывающие и мебельные.
  2. Медеплавильные.
  3. Горнодобывающие предприятия и шахты.
  4. Перерабатывающие каменный уголь.
  5. Заводы по производству резины и изделий из неё.
  6. Учреждения, выпускающие углеродные и графитовые изделия, электропроводники.
  7. Заводы по производству чугуна, стали.
  8. Фармацевтические.

В результате длительного и систематического контакта с каменным углем может развиться рак кожи. А у работников лакокрасочных предприятий заметно выше распространённость рака мочевого пузыря.

Механизм канцерогенного действия

так выглядит раковая опухоль

Среди канцерогенных веществ органические составляют большую долю по сравнению с неорганическими.

Как уже сказано выше, канцерогенами называют вещества вызывающие опухоли. С латинского это слово переводится как «образующие рак». Как действуют эти агенты? Проникая в организм, канцерогены скапливаются в органе-мишени, если таковой есть либо распространяются по всему организму. Затем они связываются с клеточными ДНК или РНК. В процессе копирования генов возникают неполадки. Новая ДНК может иметь уже совсем другую (аномальную) структуру. Также чаще всего нарушается протекание процесса самоуничтожения старых клеток (апоптоз), и количество «неправильных» клеток увеличивается. В масштабах всего организма наблюдается опухолевый рост. В зависимости от вида канцерогенного вещества, длительности и периодичности воздействия, количества, могут возникать доброкачественные или злокачественные опухоли. Но отравление химическими веществами, которые содержат канцерогены, намного повышает риск развития рака.

Одними из самых сильных канцерогенов признаны:

  • пестициды;
  • бензол;
  • диоксиды;
  • винилхлорид;
  • афлатоксины;
  • тяжёлые металлы и их соли;
  • глутаматы.

Канцерогены в продуктах питания и их влияние на организм:


Как обезопасить себя от воздействия канцерогенов

мытье овощей перед употреблением в пищу

Чтобы не подвергаться канцерогенному эффекту некоторых продуктов, следует избегать их употребления. Нужно перейти на органически выращенные фрукты и овощи. Если это невозможно, следует очень тщательно мыть растения и снимать кожуру. Рыбу и мясо надо покупать из проверенных источников. От обработанных мясных продуктов лучше полностью отказаться. Избегать пищи, содержащей ГМО и подсластители. От газированных напитков, белого хлеба и кондитерской продукции, попкорна, сухих завтраков и чипсов лучше держаться подальше. Консервированные томаты лучше предпочесть в стеклянных банках, а не в жестяных. Не злоупотреблять алкоголем.

Как вывести канцерогены из организма? На это способна наша печень. Именно она «собирает», накапливает и выводит все вредные элементы из нашего тела. Питаться нужно часто и дробно, не менее 4–5 раз в сутки. Есть побольше овощей и фруктов. Использовать природные энтеросорбенты (отруби, подорожник, яблоки, капуста). Доказано несколькими исследованиями, что капуста выводит канцерогены, образующиеся при жарке мяса.

Основное место накопления канцерогенных веществ - жировая ткань. Соответственно, чтобы вывести их, нужно избавиться от избыточного веса. Различные диеты не всегда помогают, а иногда они даже вредны. Упор следует сделать на правильное питание и физические упражнения. Физическая нагрузка поможет не только похудеть, но и усилит обмен веществ, ускорит выведение канцерогенов.

КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА

(канцерогены, онкогенные в-ва), хим. соед., увеличивающие частоту возникновения злокачеств. опухолей. Среди К. в. условно различают агенты прямого и непрямого действия. К первым относят высокореакционные соед. ( и его производные, и др.), способные непосредственно реагировать с биополимерами (ДНК, РНК, ). Непрямые К. в. сами по себе инертны и превращаются в активные соед. при участии ферментов клетки - напр., монооксигеназ, катализирующих включение одного атома кислорода в молекулу субстрата. В результате образуются в-ва, к-рые реагируют с биополимерами. Так, метаболич. активация непрямого К. в. N-нитрозодиметиламина (НДМА), вызывающего опухоли у мн. видов животных, осуществляется по схеме:

Образующийся при этом диазогидроксид способен алкилировать клетки, в т. ч. нуклеоф. центры оснований ДНК. Предполагают, что при этом наиб. важная мишень - , алкилирование к-рого по атому О в положении 6 приводит к возникновению мутаций (см. также ст. Мутагены ). Мутации возникают в процессе репарации (восстановления) ДНК, если вырезанный эндонуклеазами поврежденный участок восстанавливается с ошибками (напр., в результате изменения первоначальной последовательности нуклеотидов), к-рые копируются при репликации (самовоспроизведении ДНК) и, зафиксировавшись таким образом, передаются в ряду клеточных поколений. Если такие структурные изменения происходят в протоонкогене (нуклеотидной последовательности ДНК, обусловливающей злокачеств. трансформацию клетки), то это приводит к превращению его в онкоген и синтезу мутантных регуляторных белков, осуществляющих отдельные стадии злокачеств. трансформации клетки. То же самое может происходить в результате вызванных К. в. изменений в расположении генов в геноме (напр., при транслокации гена С-тус в область активно транскрибируемых иммуноглобулиновых генов при лимфоме Бёркитта). Возникновение онкогенных мутаций - стадия инициации канцерогенеза (превращения нормальной клетки в опухолевую), а вызывающие канцерогенез агенты наз. канцерогенами-инициаторами. Дальнейшие изменения клетки на пути злокачеств. превращения вызывают канцерогенеза, к-рые обусловливают нарушения межклеточного взаимод., клеточного обмена, приводят клетку в состояние фенотипически выраженной опухолевой трансформации и к развитию опухоли. Первичный опухолевый узел прогрессирует в осн. в результате клеточного отбора, изменяя свои св-ва в зависимости от разл. воздействий (гормональных, химиотерапевтических) чаще всего в сторону дедифференцировки и уменьшения зависимости от регуляторных воздействий организма. Наиб. изученными промоторами кожного канцерогенеза являются нек-рые производные дитерпенов, печеночного -фенобарбитал (5-фенил-5-этил-2,4,6-пиримидинтрион) и нек-рые хлорорг. соед., в толстой кишке - желчные к-ты. Подавляющее большинство К. в. обладает как инициирующей, так и промотирующей активностью и относятся к "полным" К. в. Мн. К. в. обладают выраженной органотропностью (способностью индуцировать опухоли в определенных органах), к-рая м. б. обусловлена распределением К. в. в организме и особенностями их метаболизма в клетках разных органов. Так, напр., 2-нафтиламин и вызывают у человека рак мочевого пузыря, - ангиосаркомы печени, асбест - мезотелиомы плевры и брюшины. В эксперименте опухоли кожи вызывают полициклич. ароматич. (напр., 1,2-бензопирен, 9,10-диметил-1,2-бензоантрацен), опухоли печени - производные флуорена (напр., 2-ацетиламинофлуорен, ф-ла I): нек-рые (напр., 3-метил-4"-диметиламиноазобензол), (напр., афлатоксин B 1), опухоли кишечника - производные гидразина (напр., ). Отмечена видовая специфичность действия мн. К. в. Так, 2-ацетиламикофлуорен - К. в. для крыс, но не для морских свинок, афлатоксин B 1 обнаруживает высокую в организме крыс и радужной форели, но малоактивен для мышей.

Согласно данным международного агентства по изучению рака (МАИР), в 1985 насчитывалось 9 производств. процессов и 30 соед., продуктов или групп соед., безусловно способных вызывать опухоли у человека. Еще 13 в-в рассматриваются как агенты с весьма высокой вероятностью канцерогенного риска для человека. К безусловным К. в. относятся: , или имуран (см. Иммуномодулирующие средства ); противоопухолевые ср-ва (нек-рые из них в настоящее время не используются) - (II), хлорбутин (III), милеран CH 3 S(O 2)O(CH 2) 4 OS(O 2)CH 3 , мелфалан L-п-[(ClCH 2 CH 2) 2 N]C 6 H 4 CH 2 CH(NH 2)COOH; комбинация противоопухолевых препаратов, включающая прокарбазин n-[(CH 3) 2 CHNHC(O)]C 6 H 4 CH 2 NHNHCH 3 .НСl, азотистый , винкристин (алкалоид, содержащийся в растении барвинок розовый) и (IV); обезболивающие ср-ва, содержащие фенацетин п- C 2 H 5 OC 6 H 4 NHC(O)CH 3 ; смесь эстрогенов [пиперазиниевая и Na-соль эстрона (V) и Na-соль эквилина (VI)]; винилхлорид; диэтилстильбэстрол [п-НОС 6 Н 4 С(С 2 Н 5)=] 2 ; иприт; метоксазолен (VII) в сочетании с УФ облучением; ; 2-нафтиламин; N,N- бис -(2-хлорэтил)-2-нафтиламин; треосульфин 2 ; 1,1"-дихлордиметиловый эфир; бензидин; 4-аминобифенил; и его соед.; и нек-рые его соед.; каменноугольный деготь; пек, получаемый из этого дегтя; ; сланцевые масла; ; асбест; табачный дым; жвачка, содержащая листья бетеля и табака; жевательный табак. К условным К. в. для человека относят: , нек-рые афлатоксины, 1,2-бензопирен, и его соед., диметил- и диэтилсульфат, и нек-рые его соед., прокарбазин, о-толуидин, фенацетин, азотистые иприты, креозот и гидрооксиметалон (VIII). Повыш. частота возникновения злокачеств. опухолей наблюдается на предприятиях по газификации угля, очистке никеля; произ-ву аурамина (диарилметановый краситель); при подземной добыче гематита (красного железняка) в шахтах, загазованных радоном; в резиновой, мебельной и обувной пром-стях; при произ-ве кокса и изопропилового спирта с использованием H 2 SO 4 . В быту К. в. поступают в организм человека с продуктами курения табака, к-рые вызывают рак мн. локализаций (в первую очередь рак легкого), с выхлопами двигателей внутр. сгорания, дымовыми выбросами отопит. систем и пром. предприятий, микотоксинами, загрязняющими продукты питания при неправильном их хранении, и т. д. Показана возможность синтеза в желудке человека канцерогенных нитрозаминов из вторичных и нитритов. Эндогенные К. в. образуются в организме при нарушении обмена нек-рых аминокислот, в частности триптофана и тирозина, к-рые могут превращаться соотв. в канцерогенные 3-гидроксикинуренин и 3-гидроксиантраниловую (2-амино-3-гидроксибензойную) к-ту. Действие К. в. может быть существенно ослаблено с помощью витаминов (рибофлавина, аскорбиновой к-ты, витамина Е), b-каротина (каротиноид), микроэлементов (солей Se и Zn), ряда др. хим. соед. (напр., тетурама, нек-рых стероидов). Лит.: Шабад Л. М., Эволюция концепций бластомогенеза, М., 1979; Итоги науки и техники. Сер. Онкология, т. 15. Химический канцерогенез. М., ВИНИТИ, 1986; IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Suppl., v. 4 Chemicals, industrial processes and industries associated with cancer in humans, Lyon, 1982 (IARC Monographs, v. 1 to 29); Valinio H. , "Carcmogenesis", 1985, v. 6, № 11, p. 1653-65. Г. А. Белицкий.

Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА" в других словарях:

    - (от лат. cancer рак и...ген) химические вещества, воздействие которых на организм при определенных условиях вызывает рак и другие опухоли. К канцерогенным веществам относят представителей различных классов химических соединений: полициклические… … Большой Энциклопедический словарь

    Канцерогенные вещества - химические соединения, способные при воздействии на организм человека вызывать рак и др. заболевания (злокачественные опухоли), а также доброкачественные новообразования. См. также Канцерогенность … Российская энциклопедия по охране труда

    - (от лат. cancer рак и...ген), химическая вещества, воздействие которых на организм при определенных условиях вызывает рак и другие опухоли. К канцерогенным веществам относят представителей различных классов химических соединений:… … Энциклопедический словарь

    - (от лат. cancer рак и греч. genes рождающий, рожденный) бластомогенные вещества, канцерогены, карциногены, химические соединения, способные при воздействии на организм вызывать рак и др. злокачественные опухоли, а также доброкачественные… … Большая советская энциклопедия

    - (канцеро + греч. genes порождающий) м. Онкогенные вещества … Большой медицинский словарь

    - (от лат. cancer рак и...ген), хим. в ва, воздействие к рых на организм при определ. условиях вызывает рак и др. опухоли. К К. в. относят представителей разл. классов хим. соединений: полициклич. углеводороды, азокрасители, ароматич. амины,… … Естествознание. Энциклопедический словарь

    - (син.: бластимогенные вещества, канцерогенные вещества, канцерогены) вещества, обладающие способностью вызывать развитие опухолей. Онкогенные вещества экзогенные О. в., поступившие в организм из окружающей среды. Онкогенные вещества эндогенные О … Медицинская энциклопедия

    - (син.: бластомогенные вещества, канцерогенные вещества, канцерогены) вещества, обладающие способностью вызывать развитие опухолей … Большой медицинский словарь

Канцерогенные вещества, в зависимости от их способности взаимодействовать с ДНК, подразделяют на две группы:

По происхождению канцерогены могут быть:

По характеру действия канцерогены разделяются на три группы:

Также классификация канцерогенов может быть произведена в соответствии с природой токсичного вещества:

  • Химического происхождения (ароматические углеводороды);
  • Физического происхождения (ионизирующее излучение);
  • Биологического происхождения (вирус гепатита В).

Воздействие канцерогена на теплокровных животных

Сложные механизмы, посредством которых химические вещества индуцируют злокачественный рост, пока не изучены полностью, но имеются данные, свидетельствующие о наличии четырех основных стадий этого процесса, начиная с момента адекватного воздействия химического канцерогена на организм млекопитающего (включая человека):

Некоторые канцерогенные вещества, по-видимому, ответственны только за какой-то один этап данного процесса и не рассматриваются как полные канцерогены. Например, многие химические вещества, которые взаимодействуют с ДНК и поэтому являются мутагенами, вероятно, инициируют данный процесс в результате первичного повреждения ДНК. Это так называемые инициаторы, и вызываемые ими повреждения носят, как правило, необратимый характер.

Другие соединения оказывают влияние на экспрессию и прогрессию первоначального изменения в ДНК, и называются инхансерами опухолевого роста. Некоторые из этих соединений не взаимодействуют с ДНК, они не являются мутагенами и выступают в качестве так называемых промоторов опухолей. Третья группа включает химические вещества, известные как полные канцерогены; эти вещества, по-видимому, способны как к инициации, так и промоции злокачественного роста. Все вещества, вызывающие повреждения ДНК, приводящие к мутациям или возникновению рака, включая инициаторы канцерогенеза и полные канцерогены, рассматриваются как генотоксичные.

Ограничение стажа работы в виброопасной профессии, так же, как и режимы труда, является одной из форм «защиты временем» – метода широко применяемого для профилактики вредного воздействия виброакустических факторов.

4.8. Промышленные канцерогены

Канцероген – это фактор, под воздействием которого возрастает частота развития злокачественных новообразований (рака) или сокращается время их появления.

Промышленные канцерогены (или канцерогенные производственные факторы) – это канцерогенные факторы, воздействие которых обусловлено профессиональной деятельностью человека.

Ещё в 1775 г. английским врачом П. Потом впервые была описана роль промышленного канцерогена в развитии рака мошонки от действия печной сажи – « болезни трубочистов». В конце Х1Х в. в Германии были зарегистрированы онкологические заболевания мочевого пузыря среди работников красильной фабрики при воздействии ароматических аминов. В последующем было описано канцерогенное действие десятков химических, физических и биологических факторов производственной среды.

Экспертами Международного агентства изучения рака (МАИР) в 2001 г. было разработано ранжирование факторов по степени доказательности канцерогенности для человека (табл. 4.6).

Таблица 4.6

Ранжирование канцерогенных факторов

Группа факторов

Количество

Канцерогенные для человека

2А. Вероятно канцерогенные для человека

2В. Возможно канцерогенные для человека

Не классифицируемые в отношении канцерогенности

для человека

Вероятно не канцерогенные для человека

Ниже приводится перечень канцерогенных факторов (с доказанной канцерогенностью), включённых в национальный Перечень (ГН 1.1.725-98).

Соединения и продукты, производимые и используемые в промышленности

4-амидофенил Асбесты

Афлатоксины (В1, а также природная смесь афлактоксинов) Бензидин Бензол Бенз(а)пирен

Бериллий и его соединения Бихлорметиловый и хлорметиловый (технический) эфиры Винилхлорид Иприт сернистый

Кадмий и его соединения Каменноугольные и нефтяные смолы, пеки и их возгоны

Минеральные масла (нефтяные, сланцевые) неочищенные и не полностью очищенные Мышьяк и его нерганические соединения

1-нафтиламин технический, содержащий более 0,1 % 2-нафтиламина 2-нафтиламин Никель, его соединения и смеси соединений никеля

Производственные процессы

Деревообрабатывающее и мебельное производства с использованием фенолформальдегидных и карбамидформальдегидных смол в закрытых помещениях Медеплавильное производство (плавильный передел, конвертерный передел, огневое рафинирование)

Производственная экспозиция к радону в условиях горнодобывающей промышленности и работы в шахтах.

Производство изопропилового спирта Производство кокса, переработка каменноугольной и сланцевой смол, газификация угля Производство резины и резиновых изделий

Производство технического углерода

Производство угольных и графитовых изделий, анодных и подовых масс с использованием пеков, а также обожжённых анодов Производство чугуна и стали (агломерационные фабрики, доменное и сталелитейное производство, горячий прокат)

Электролитическое производство алюминия с использованием самоспекающихся анодов Производственные процессы, связанные с экспозицией к аэрозолю сильных

неорганических кислот, содержащих серную кислоту

Бытовые и природные факторы

Алкогольные напитки Радон Сажи бытовые

Солнечная радиация Табачный дым

Табачные продукты, бездымные (жевание нюхательного табака, а также табачной смеси, содержащей известь)

В первую группу включены факторы, имеющие безусловные доказательства канцерогенной опасности. К ним отнесены 87 наименований факторов химической природы, промышленные технологические процессы, вредные привычки, инфекции, лекарства и др. В группе 2А – агенты с высокой степенью доказательности для животных, но ограниченной для организма человека. Группа 2В включает вещества с вероятной канцерогенностью для человека и группа 3 содержит соединения, которые не могут быть достаточно точно оценены в отношении их канцерогенности (фтор, селен, диоксид серы и др.).

К группе 2А относятся 20 производственных химических соединений (акрилонитрил, красители на основе бензидина, 1, 3-бутадиен, креозот, формальдегид, кристаллический кремний, тетрахлорэтилен и др.), к группе 2В – большое число веществ, включающих ацетальдегид, дихлорметан, неорганические соединения свинца, хлороформ, керамические волокна и т. д.

К производственным канцерогенным факторам физической природы относятся ионизирующее и ультрафиолетовое излучения, электрические и магнитные поля, к биологическим факторам – некоторые вирусы (например, вирусы гепатита А и С), микротоксины (например, афлотоксины).

В общей структуре онкологических заболеваний промышленные канцерогены как первопричина занимают от 4 до 40 % (в развитых странах от

Проведение профилактики онкологических заболеваний включает:

- снижение воздействия канцерогенных производственных факторов путём модернизации производства, разработок и реализации дополнительных индивидуальных и коллективных мер защиты;

- введение схемы ограничений допуска к работе с канцерогенными производственными факторами;

- постоянный мониторинг за качеством окружающей среды и состоянием здоровья работников канцерогенно опасных работ и производств;

- осуществление целевых программ оздоровления работников и своевременное их освобождение от канцерогенно опасных работ на основе результатов производственного контроля и аттестации рабочих мест по условиям труда.

4.9. Аэроионизация воздуха в условиях производственной среды

Фактор ионизации воздуха является важным критерием его качества. Аэроионный состав воздуха относится к группе физических факторов, роль и значение которого особенно интенсивно изучались в начале и середине XX столетия.

Приоритет научных исследований в этой области принадлежит советскому учёному профессору А.Л. Чижевскому, открывшему в 1919 г. биологическое и физиологическое действия униполярных аэроионов и затем в последующие годы всесторонняя разработка этого открытия применительно к медицине, сельскому хозяйству, промышленности и т. д. Впервые в эксперименте на животных он установил действие положительных и отрицательных униполярных аэроионов на функциональное состояние нервной, сердечно-сосудистой, эндокринной систем, на кроветворные органы, на морфологию, физику и химию крови (на количество и качество белой и красной крови), на температуру тела, его пластическую функцию,

обмен веществ и др. При этих исследованиях оказалось, что аэроионы отрицательной полярности сдвигают все функции в благоприятную сторону, а аэроионы положительной полярности часто влияют крайне неблагоприятно. Эти исследования позволили А.Л. Чижевскому глубоко проникнуть внутрь живой клетки и впервые показать, какое значение имеют положительные и отрицательные заряды в её жизнедеятельности. Ионы воздуха им были названы аэроионами , процесс их возникновения –аэроионизацией , искусственное насыщение ими воздуха закрытых помещений –аэроионификацией , лечение ими –аэроионотерапией . Эта терминология укрепилась в мировой науке и широко применяется в настоящее время в различных аспектах как научной, так и практической деятельности.

Физическая основа этого явления заключается в том, что под воздействием ионизатора молекула газа в атмосферном воздухе (чаще всего кислорода) теряет электрон с наружной оболочки атома, который может оседать на другом атоме (молекуле). В результате возникают два иона, несущие по одному элементарному заряду – положительный и отрицательный. Присоединение к образовавшимся двум ионам нескольких нейтральных молекул даёт начало лёгким аэроионам . Адсорбция ионов на ядрах конденсации (высокодисперсные аэрозольные частицы, в том числе и микроорганизмы) ведёт к образованиютяжёлых аэроионов (или «псевдоаэроионов»).

Источники ионизации воздуха (ионизаторы) подразделяются на естественные и искусственные. Естественная ионизация происходит повсеместно и постоянно во времени в результате воздействия различных излучений (космического, ультрафиолетового, радиоактивного) и атмосферного электричества. Искусственная ионизация воздуха создаётся в результате деятельности человека и является либо нежелательной, как продукт тех или иных технологических процессов (фотоэлектрический эффект, процесс горения и т. д.), либо специально создаваемой для определённых целей, например, при помощи аэроионизаторов – для компенсации аэроионной недостаточности. Несмотря на то что ионообразование является непрерывным процессом, число ионов не растёт безгранично, так как наряду с этим процессом происходит непрерывное исчезновение аэроионов за

счёт рекомбинации, диффузии, адсорбции на различных фильтрах и в системах очистки воздуха. Вследствие того, что в воздухе постоянно идут ионообразование и ионоуничтожение, возникает состояние равновесия между двумя процессами и в зависимости от соотношения их скоростей устанавливается определённое состояние ионизированности воздушной среды как одного из важнейших аспектов качества воздуха, комфортной и «здоровой» среды обитания в целом. При гигиенической характеристике содержания аэроионов используется так называемый коэффициент униполярности – отношение числа лёгких ионов с отрицательным зарядом к их числу с зарядом положительным. Фильтрация воздуха через высокоэффективные фильтры приводит к потере легких ионов, но нарушенное равновесное состояние за счёт природного радиационного фона восстанавливается за несколько минут.

Нормальное течение нейроэндокринных, физиологических, метаболических и других процессов в организме, во многом определяется присутствием ионов во вдыхаемом воздухе. Длительный (и тем более хронический) дефицит аэроионов может приводить к серьёзным нарушениям здоровья, в частности, к широко распространённым среди работников современных офисных помещений заболеваниям, связанным с пребыванием в зданиях (Building – Related Illnesses, BRI).

Искусственную ионизацию воздуха помещений с оздоровительной (профилактической) целью целесообразно осуществлять биполярно, обеспечивая присутствие в воздушной среде ионов обоих знаков полярности и поддерживая аэроионный фон помещений, близким к природному, когда биологическое действие «активных» отрицательных ионов будет гармонично сбалансировано действием положительных ионов. Для современных офисных помещений задачу нормализации аэроионного состава воздуха целесообразно решать, используя ионизаторы (биполярные), встраиваемые в приточные воздуховоды вентиляционных систем (вблизи воздухораспределительных решёток), тогда распределение аэроионов по помещению происходит равномерно и минимизируются потери генерирующих ионов.

Нормируемые значения содержания аэроионов регламентированы СанПиН 2.2.4.1294-03 «Гигиенические требования к аэроионному составу воздуха производственных и общественных зданий», учитывающие следующие показатели концентраций лёгких ионов в 1 см3 : минимально допустимая концентрация (положительных – 400, отрицательных – 600); оптимальная концентрация (соответственно, 1 500–3 000 и 3 000–5 000); максимально допустимая концентрация (50 000 для обоих знаков).

В условиях производственной деятельности ряд технологических процессов становятся ведущими в генерировании аэроионов. Например, при сварочных работах (газовая и электродуговая сварки) число тяжёлых аэроионов в зоне дыхания работника может достигать 60 000 и более в 1 см 3 . Интенсивному ионообразованию в производственных помещениях способствуют применение лазерного и ультрафиолетового излучений, процессы горения, плавки металлов, шлифовки и заточки материалов.

В отдельных случаях искусственная аэроионизация используется в производственных условиях для улучшения качества продукции и повышения продуктивности труда. Например, в текстильной промышленности – для снятия электростатического заряда с нитей искусственного (полимерного) волокна. При этом в зоне дыхания работающих число отрицательно заряжённых аэроионов в течение смены может достигать десятков тысяч в 1 см 3 . И, напротив, в отдельных случаях при наличии электромагнитных полей и электростатического электричества в помещениях с персональными компьютерами, мониторами, концентрации аэроионов как отрицательной, так и положительной полярностей, могут не превышать 100 лёгких ионов в 1 см3 .

Аэроионный состав воздуха рекомендуется измерять в рабочих помещениях, воздушная среда которых подвергается специальной очистке или кондиционированию; где есть источники ионизации воздуха (УФизлучатели, плавка и сварка металлов), где эксплуатируется оборудование

и используются материалы, способные создавать электростатические поля (ВДТ, синтетические материалы и пр.), где применяются аэроионизаторы

и деионизаторы. Контроль и оценку фактора осуществляют в соответствии с

СанПиН 2.2.4.1294-03 и методическими указаниями МУК 4.3.1675-03 «Общие требования к проведению контроля аэроионного состава воздуха». При превышении максимально допустимой и (или) несоблюдении минимально необходимой концентрации аэроионов и коэффициента униполярности условия труда персонала по данному фактору, согласно гигиенической классификации, относятся к вредным (классу 3.1).

4.10. Тяжесть и напряжённость трудового процесса. Утомление. Фазы работоспособности.

Режимы труда и отдыха

К факторам трудового процесса относятся тяжесть и напряжённость труда.

Тяжесть труда – характеристика трудового процесса, отражающая преимущественную нагрузку на опорно-двигательный аппарат и функциональные системы организма (сердечно-сосудистую, дыхательную и др.), обеспечивающие его деятельность.

Показатели трудового процесса, характеризующие тяжесть труда.

1. Физическая динамическая нагрузка, выраженная в единицах внешней механической работы за смену, кг · м:

а) при региональной нагрузке; б) при общей нагрузке;

в) при перемещении груза на расстояние от 1 до 5 м; г) при перемещении груза на расстояние более 5 м.

2. Масса поднимаемого и перемещаемого груза, кг:

а) подъём и перемещение (разовое) тяжести при чередовании с другой работой;

б) подъём и перемещение (разовое) тяжести постоянно в течение рабочей смены;

в) суммарная масса грузов, перемещаемых в течение каждого часа смены с рабочей поверхности и с пола.

3. Стереотипные рабочие движения, количество за смену: а) при локальной нагрузке;

б) при региональной нагрузке.

4. Статическая нагрузка, кг · с: а) одной рукой; б) двумя руками;

в) с участием мышц корпуса и ног.

5. Рабочая поза.

6. Наклоны корпуса, количество за смену.

7. Перемещения в пространстве, обусловленные технологическим процессом:

а) по горизонтали; б) по вертикали.

Оценка тяжести физического труда проводится на основе учёта всех

показателей. При этом вначале устанавливают класс по каждому измеренному показателю, а окончательная оценка тяжести труда устанавливается по наиболее чувствительному показателю, получившему наиболее высокую степень тяжести.

Напряжённость труда – характеристика трудового процесса, отражающая нагрузку преимущественно на центральную нервную систему (ЦНС), органы чувств, эмоциональную сферу работника.

Показатели трудового процесса, характеризующие напряжённость труда.

1. Интеллектуальные нагрузки: а) содержание работы;

б) восприятие сигналов (информации) и их оценка; в) распределение функций по степени сложности задания; г) характер выполняемой работы.

2. Сенсорные нагрузки:

а) длительность сосредоточенного наблюдения (% времени смены); б) плотность сигналов (световых, звуковых) и сообщений в среднем

за 1 час работы; в) число производственных объектов одновременного наблюдения;

г) размер объекта различения (при расстоянии от глаз работающего до объекта различения не более 0,5 м) в миллиметрах при длительности сосредоточенного наблюдения (% времени смены);

д) работа с оптическими приборами (микроскопами, лупами и т. п.) при длительности сосредоточенного наблюдения (% времени смены);

е) наблюдение за экранами видеотерминалов (часов в смену); ж) нагрузка на слуховой анализатор; и) нагрузка на голосовой аппарат.

3. Эмоциональные нагрузки:

а) степень ответственности за результат собственной деятельности; б) степень риска для собственной жизни; в) степень риска за безопасность других лиц;

г) количество конфликтных ситуаций, обусловленных профессиональной деятельностью, в смену.

4. Монотонность нагрузок:

а) число элементов (приёмов), необходимых для реализации простого задания или в многократно повторяющихся операциях;

б) продолжительность выполнения простых заданий или повторяющихся операций;

в) время активных действий (в % продолжительности смены); г) монотонность производственной обстановки (время пассивного на-

блюдения за ходом техпроцесса в процентах от времени смены). 5. Режим работы:

а) фактическая продолжительность рабочего дня; б) сменность работы;

в) наличие регламентированных перерывов и их продолжительность. По каждому из показателей в отдельности определяется свой класс условий труда. В том случае, если по характеру или особенностям профессиональной деятельности какой-либо показатель не представлен, то по данному показателю ставится 1 класс (оптимальный) – напряжённость

труда лёгкой степени.

Утомление – состояние, сопровождающееся чувством усталости, снижением работоспособности, вызванное интенсивной или длительной

деятельностью, которое выражается в ухудшении количественных и качественных показателей работы и прекращается после отдыха.

С давних пор физиологи пытались ответить на вопрос о сущности и механизмах утомления. Утомление рассматривалось как следствие «истощения» энергетических ресурсов мышцы (главным образом обмена углеводов) или как результат недостаточного снабжения кислородом и нарушение окислительных процессов – теория «задушения»; определялось как следствие засорения тканей продуктами обмена, т. е. «отравления» ими.

По одной из теорий развитие утомления связывалось с накоплением в мышцах молочной кислоты. Все эти теории были гуморальнолокалистическими, определяющими утомление как процесс, происходящий только в мышцах, не принимая во внимание координирующую роль центральной нервной системы. Изучению роли ЦНС в развитии утомления посвящены работы И.М. Сеченова, И.П. Павлова, Н.Е. Введенского, А.А. Ухтомского, М.И. Виноградова.

Так, И.М. Сеченов показал, что утомление возникает не в самом работающем органе, не в мышце, а в ЦНС: «Источник ощущения усталости лежит не в мышце, а в нарушении деятельности нервных клеток мозга». М.И.Виноградов считал необходимым различать два вида утомления: быстро наступающее, обусловленное центральным торможением, и медленно развивающееся, связанное со снижением уровней передачи нервных импульсов в самом двигательном аппарате.

По мнению И.П. Павлова торможение, возникающее при утомлении в ЦНС, носит охранительный характер, ограничивая работоспособность корковых центров мозга, оно охраняет нервные клетки от перенапряжения и гибели. До настоящего времени наиболее популярной является цен- трально-нервная теория утомления. Вместе с тем не исключается возможность влияния местных процессов, происходящих в мышцах и других работающих органах, на формирование процессов утоления (недостаток кислорода, истощение питательных веществ, накопление метаболитов и др.).

Они могут ускорять утомление, а за счёт обратных связей – изменять функциональное состояние ЦНС. Так, при тяжёлом физическом утомлении, умственная работа малопродуктивна, и, наоборот, при умственном

утомлении сохраняется мышечная работоспособность. При умственной деятельности постоянно наблюдаются элементы мышечного утомления: длительное пребывание в определённой статической позе приводит к значительному утомлению соответствующих звеньев двигательного аппарата.

При умственном утомлении отмечаются более выраженные функциональные сдвиги со стороны ЦНС: расстройство внимания, ухудшение памяти и мышления, ослабляется точность и координация движений. Возобновление работы на фоне медленно развивающегося утомления приводит к тому, что сохранившиеся следы утомления накапливаются и наступает переутомление, а вместе с ним головная боль, чувство тяжести в голове, вялость, рассеянность, снижение памяти, внимания, нарушение сна.

Фазы работоспособности

Эффективность трудовой деятельности человека в значительной степени зависит от двух главных факторов: нагрузки и динамики работоспособности.

Общая нагрузка формируется взаимодействием следующих компонентов: предмет и орудия труда, организация рабочего места, гигиенические факторы производственной среды, технико-организационные мероприятия. Эффективность согласования указанных факторов с возможностями человека во многом зависит от наличия определённой работоспособности.

Работоспособность – величина функциональных возможностей организма, которая характеризуется количеством и качеством работы, выполняемой за определённое время, при максимально интенсивном напряжении.

Уровень функциональных возможностей человека зависит от условий труда, состояния здоровья, возраста, степени тренированности, мотивации к труду и других факторов специфических особенностей каждой конкретной деятельности. Во время трудовой деятельности функциональная способность организма и производительность труда закономерно изменяются

на протяжении рабочего дня. При этом динамика работоспособности имеет несколько фаз или сменяющих друг друга состояний человека (рис. 4.1).

Рис. 4.1. Динамика работоспособности человека:

I, IV – периоды врабатывания; II, V – периоды высокой работоспособности; III, VI – периоды снижения работоспособности; VII – конечный порыв

Фаза врабатывания. В этот период ускоряется и увеличивается объём физиологических процессов, уровень работоспособности постепенно повышается по сравнению с исходным. В зависимости от характера труда и индивидуальных особенностей человека, этот период длится от несколько минут до 1,5 ч, а при умственном творческом труде – до 2–2,5 ч.

Фаза высокой устойчивой работоспособности. Для неё характерно сочетание высоких трудовых показателей с относительной стабильностью или даже некоторым снижением напряжённости физиологических функций. Продолжительность периода может быть 2–2,5 ч и более, в зависимости от степени нервно-эмоционального напряжения, физической тяжести и гигиенических условий труда.

Фаза снижения работоспособности. Падение работоспособности со-

провождается уменьшением функциональных возможностей основных работающих органов человека. К обеденному перерыву ухудшается состояние сердечно-сосудистой системы, снижается внимание, появляются лишние движения, ошибочные реакции, замедляется скорость решения задач.

Динамика работоспособности повторяется и после обеденного перерыва. При этом фаза врабатывания протекает быстрее, а фаза устойчивой работоспособности по уровню ниже и менее длительная, чем до обеда. Во второй половине смены снижение работоспособности наступает раньше и развивается быстрее в связи с более глубоким утомлением. Перед самым концом работы происходит кратковременное повышение работоспособности, так называемый конечный или «финишный» порыв.

Встречающиеся отклонения от типичной классической кривой работоспособности большей или меньшей выраженности свидетельствуют о наличии неблагоприятных внешних причин, характерных для конкретных видов деятельности, но при этом главной задачей является продление фа-

зы устойчивой работоспособности.

Режимы труда и отдыха. При разработке рациональных режимов труда и отдыха необходимо учитывать особенности профессиональной деятельности. Для современного состояния научно-технического прогресса характерно стирание граней между умственным и физическим трудом, увеличение доли умственного компонента. В чём же здесь особенности?

Умственный труд объединяет работы, связанные с приёмом и недоработкой информации, требующие преимущественного напряжения сенсорного аппарата, внимания, памяти, а также активации процессов мышления, эмоциональной сферы. Подразделяется на операторский, управленческий, творческий труд, труд медицинских работников, труд преподавателей, учащихся и студентов. Указанные виды труда отличаются по организации трудового процесса, равномерности нагрузки, степени эмоционального напряжения.

Например, управленческий труд – труд руководителей учреждений, организаций, предприятий характеризуется чрезмерным ростом объёма информации, возрастанием дефицита времени для её переработки, повышенной личной ответственностью за принятие решений, возможными конфликтными ситуациями. Труд преподавателей отличается постоянными контактами с людьми, повышенной ответственностью, часто дефицитом времени и информации для принятия правильного решения, что обусловливает высокую степень нервно-эмоционального напряжения. Для

труда студентов характерно напряжение основных психических функций (память, внимание, восприятие), наличие стрессовых ситуаций (экзамены, зачёты). Нервно-эмоциональное напряжение сопровождается усилением деятельности сердечно-сосудистой системы, дыхания, энергетического обмена, повышением тонуса мускулатуры.

Оптимизация умственного труда должна быть направлена на сохранение высокого уровня работоспособности и на устранение хронического нервно-эмоционального напряжения.

При разработке рациональных режимов труда и отдыха необходимо учитывать тот факт, что при умственной нагрузке мозг склонен к инерции, к продолжению мыслительной деятельности в заданном направлении. По окончании умственной работы «рабочая доминанта» полностью не угасает, обусловливая более длительное утомление и истощение ЦНС, чем при физической работе.

Существуют общие основные физиологические условия продуктивной умственной работы.

1. В работу следует «входить» постепенно. Это обеспечивает последовательное включение физиологических механизмов, определяющих высокий уровень работоспособности.

2. Необходимо соблюдать определённый ритм работы, что способствует выработке навыков и замедляет развитие утомления.

3. Следует придерживаться обычной последовательности и систематичности в работе, что обеспечивает более длительное сохранение рабочего динамического стереотипа.

4. Правильное чередование умственного труда с отдыхом. Чередование умственного труда с физическим предупреждает развитие утомления, повышает работоспособность.

5. Высокая работоспособность сохраняется при систематической деятельности, обеспечивающей упражнение и тренировку. Оптимизации умственной деятельности, как и любой деятельности,

способствует благоприятное отношение общества к труду, а также благоприятный психологический климат в коллективе.

Основная задача научно обоснованных рациональных режимов труда и отдыха заключается в снижении утомления, достижении высокой производительности труда на протяжении всего рабочего дня с наименьшим напряжением физиологических функций человека и сохранении его здоровья и длительной работоспособности.

Сохранению высокой, устойчивой работоспособности способствует периодическое чередование работы и отдыха, которое предусматривается внутрисменными режимами труда и отдыха.

Существуют две формы чередования периодов труда и отдыха:

1) введение обеденного перерыва в середине рабочего дня, оптимальная деятельность которого устанавливается с учётом удалённости от рабочих мест санитарно-бытовых помещений, столовых, других мест приёма пищи;

2) введение кратковременных регламентированных перерывов, продолжительность и количество которых определяется на основании наблюдения за динамикой работоспособности, учёта тяжести и напряжённости труда. При работах, требующих большого нервного напряжения и внимания, быстрых и точных движений рук, целесообразны более частые, но короткие 5–10- минутные перерывы.

Кроме регламентированных перерывов существуют также микропаузы – перерывы в работе, обеспечивающие поддержание оптимального темпа работы и высокого уровня работоспособности. В зависимости от характера и тяжести работы микропаузы составляют 9–10 % рабочего времени.

В соответствии с суточным циклом работоспособности наивысший уровень её отмечается в утренние и дневные часы – с 8 до 12 ч в первой половине дня и с 14 до 17 ч во второй. В вечерние часы работоспособность понижается, достигая своего минимума ночью. В дневное время наименьшая работоспособность – в период между 12 и 14 ч, а в ночное время – с 3 до 4 ч.

Чередование периодов труда и отдыха в течение недели также должно регулироваться с учётом динамики работоспособности. Так, наивысшая работоспособность приходится на 2, 3 и 4-й день работы, а в после-