Как человек воспринимает звук. Особенности восприятия человека

Человек воспринимает звук посредством уха (рис.).

Снаружи расположена раковина внешнего уха , переходящая в слуховой канал диаметром D 1 = 5 мм и длиной 3 см .

Далее расположена барабанная перепонка, которая вибрирует под действием звуковой волны (резонирует). Перепонка присоединена к костям среднего уха , передающим вибрацию другой перепонке и далее во внутреннее ухо.

Внутреннее ухо имеет вид закрученной трубки ("улитки") с жидкостью. Диаметр этой трубки D 2 = 0,2 мм длина 3 – 4 см длинной.

Поскольку колебания воздуха в звуковой волне слабые, чтобы непосредственно возбудить жидкость в улитке, то система среднего и внутренне уха совместно с их перепонками играют роль гидравлического усилителя. Площадь барабанной перепонки внутреннего уха меньше площади перепонки среднего уха. Давление, оказываемое звуком на перепонки, обратно пропорционально площади:

.

Поэтому давление на внутреннее существенно ухо возрастает:

.

Во внутреннем ухе по всей его длине натянута ещё одна мембрана (продольная), жёсткая в начале уха и мягкая в конце. Каждый участок этой продольной мембраны может колебаться с собственной частотой. В жёстком участке возбуждаются колебания высокой частоты, а в мягком – низкой. Вдоль этой мембраны расположен преддверноулитковый нерв, который воспринимают колебания и передаёт их в мозг.

Самая низкая частота колебаний источника звука 16-20 Гц воспринимается ухом как низкий басовый звук. Область наибольшей чувствительности слуха захватывает часть среднечастотного и часть высокочастотного поддиапазонов и соответствует интервалу частот от 500 Гц до 4-5 кГц . Человеческий голос и звуки, издаваемые большинством важных нам процессов в природе, имеют частоту в этом же интервале. При этом звуки частотой от 2 кГц до 5 кГц улавливаются ухом как звон или свист. Иначе говоря, самая важная информация передаётся на звуковых частотах приблизительно вплоть до 4-5 кГц .

Подсознательно человек разделяет звуки на "положительные", "отрицательные" и "нейтральные".

К отрицательным относятся звуки, которые прежде были не знакомы, странные и необъяснимые. Они вызывают страх и беспокойство. К ним также относятся низкочастотные звуки, например, низкий барабанный стук или вой волка, т. к. возбуждают страх. Кроме того, страх и ужас возбуждают неслышимые низкочастотные звук (инфразвук). Примеры :

    В 30-е годы 20 века в одном из лондонских театров в качестве сценического эффекта применили громадную органную трубу. От инфразвука этой трубы всё здание задрожало, а в людях поселился ужас.

    Сотрудники национальной лаборатории физики в Англии провели эксперимент, добавив к звучанию обычных акустических инструментов классической музыки сверхнизкие (инфразвуковые) частоты. Слушатели почувствовали упадок настроения и испытали чувство страха.

    На кафедре акустики МГУ проводились исследования влияние рока и поп музыки не человеческий организм. Оказалось, что частота основного ритма композиции «Дип Пёпл» вызывает неконтролируемое возбуждение, потерю контроля над собой, агрессивность к окружающим или негативные эмоции к себе. Композиция «The Beatles», на первый взгляд благозвучная, оказалась вредной и даже опасной, т. к. имеет основной ритм около 6,4 Гц. Эта частота резонирует с частотами грудной клетки, брюшной полости и близка к собственной частоте головного мозга (7 Гц.). Поэтому при прослушивании этой композиции ткани живота и груди начинают болеть и постепенно разрушаться.

    Инфразвук вызывает в организме человека колебания различных систем, в частности, сердечно-сосудистой. Это оказывает неблагоприятное воздействие и может привести, например, к гипертонической болезни. Колебания на частоте 12 Гц могут, если их интенсивность превысит критический порог, вызвать гибель высших организмов, в т. ч. людей. Эта и другие инфразвуковые частоты присутствуют в производственных шумах, шумах автострад и др. источников.

Замечание : У животных резонанс музыкальных частот и собственных может привести к распаду функции мозга. При звучании "металлического рока" коровы перестают давать молоко, а вот свиньи, наоборот, обожают металлический рок.

Положительными являются звуки ручья, прилива моря или пения птиц; они вызывают успокоение.

Кроме того, и рок не всегда плох. Например, музыка типа «кантри», исполняемая на банджо, помогает выздоравливать, хотя плохо влияет на здоровье в самом начальном этапе заболевания.

К положительным звукам относятся классические мелодии. Например, американские учёные помещали грудных недоношенных младенцев в боксы для прослушивания музыки Баха, Моцарта, и дети быстро поправлялись, набирали вес.

Благоприятно влияет на здоровье человека колокольный звон.

Любой эффект звука усиливается в полумраке и темноте, поскольку уменьшается доля информации, поступающей с помощь зрения

        Поглощение звука в воздухе и ограждающими поверхностями

Поглощение звука в воздухе

В каждый момент времени в любой точке помещения интенсивность звука равна сумме интенсивности прямого звука, непосредственно исходящего от источника, и интенсивности звука, отражённого от ограждающих поверхностей помещения:

При распространении звука в атмосферном воздухе и в любой другой среде возникают потери интенсивности. Эти потери обусловлены поглощением звуковой энергии в воздухе и ограждающими поверхностями. Рассмотрим поглощение звука с помощью волновой теории .

Поглощение звука – это явление необратимого превращения энергии звуковой волны в другой вид энергии, прежде всего в энергию теплового движения частиц среды . Поглощение звука происходит и в воздухе, и при отражении звука от ограждающих поверхностей.

Поглощение звука в воздухе сопровождается уменьшением звукового давления. Пусть звук распространяется вдоль направления r от источника. Тогда в зависимости от расстояния r относительно источника звука амплитуда звукового давления убывает по экспоненциальному закону :

, (63)

где p 0 – начальное звуковое давление при r = 0

,

 – коэффициент поглощения звука. Формула (63) выражает закон поглощения звука .

Физический смысл коэффициента состоит в том, что коэффициент поглощения численно равен величине, обратной расстоянию, на котором звуковое давление уменьшается в e = 2,71 раз:

Единица измерения в СИ:

.

Поскольку сила звука (интенсивность) пропорциональная квадрату звукового давления, то этот же закон поглощения звука можно записать в виде:

, (63*)

где I 0 – сила звука (интенсивность) вблизи источника звука, т. е. при r = 0 :

.

Графики зависимости p зв (r ) и I (r ) представлены на рис. 16.

Из формулы (63*) следует, что для уровня силы звука справедливо уравнение:

.

. (64)

Следовательно, единица измерения коэффициента поглощения в СИ: непер на метр

,

кроме того, можно вычислять в белах на метр (Б/м ) или децибелах на метр (дБ/м ).

Замечание : Поглощение звука можно характеризовать коэффициентом потерь , который равен

, (65)

где – длина звуковой волны, произведение  логарифмический коэффициент затухания звука. Величину, равную обратной величине коэффициента потерь

,

называют добротностью .

Полной теории поглощении звука в воздухе (атмосфере) пока нет. Многочисленные эмпирические оценки дают разные значения коэффициента поглощения.

Первая (классическая) теория поглощения звука была создана Стоксом и основана на учёте влияния вязкости (внутреннего трения между слоями среды) и теплопроводности (выравнивания температуры между слоями среды). Упрощенная формула Стокса имеет вид:

, (66)

где вязкость воздуха, коэффициент Пуассона, 0 плотность воздуха при 0 0 С, скорость звука в воздухе. Для обычных условий эта формула примет вид:

. (66*)

Однако формула Стокса (63) или (63*) справедлива лишь для одноатомных газов, атомы которых имеют три поступательные степени свободы, т. е. при =1,67 .

Для газов из 2, 3 или многоатомных молекул значение существенно больше, т. к. звук возбуждает вращательные и колебательные степени свободы молекул. Для таких газов (в т. ч. для воздуха) более точной является формула

, (67)

где T н = 273,15 К – абсолютная температура таяния льда ("тройная точка"), p н = 1,013 . 10 5 Па – нормальное атмосферное давление, T и p – реальные (измеряемые) температура и атмосферное давление воздуха, =1,33 для двухатомных газов, =1,33 для трёх- и многоатомных газов.

Поглощение звука ограждающими поверхносятми

Поглощение звука ограждающими поверхностями происходит при отражении от них звука. При этом часть энергии звуковой волны отражается и обуславливает возникновения стоячих звуковых волн, а другая энергии преобразуется в энергию теплового движения частиц преграды. Эти процессы характеризуют коэффициентом отражения и коэффициентом поглощения ограждающей конструкции.

Коэффициент отражения звука от преграды – это безразмерная величина, равная отношению части энергии волны W отр , отражённой от преграды, ко всей энергии волны W пад , падающей на преграду

.

Поглощение звука преградой характеризуют коэффициентом поглощения безразмерной величиной, равной отношению части энергии волны W погл , поглощённой преградой (и перешедшей во внутреннюю энергию вещества преграды), ко всей энергии волны W пад , падающей на преграду

.

Средний коэффициент поглощения звука всеми ограждающими поверхностями равен

,

, (68*)

где i коэффициент поглощения звука материалом i -й преграды, S i – площадь i -й преграды, S – общая площадь преград, n - количество разных преград.

Из этого выражения можно сделать вывод, что средний коэффициент поглощения соответствует единому материалу, которым можно было бы покрыть все поверхности преград помещения с сохранением общего звукопоглощения (А ), равного

. (69)

Физический смысл общего звукопоглощения (А) : оно численно равно коэффициенту поглощения звука открытым проёмом площадью 1 м 2 .

.

Единица измерения звукопоглощения называется сэбин :

.

Человека ухудшается, и со временем мы теряем способность улавливать определенную частоту .

Видео, сделанное каналом AsapSCIENCE , является своеобразным тестом возрастной потери слуха, который поможет вам узнать пределы вашей слышимости.

В видео проигрываются различные звуки, начиная с частоты 8000 Гц, что означает, что у вас не нарушен слух .

Затем частота повышается, и это указывает на возраст вашего слуха в зависимости от того, когда вы перестаете слышать определенный звук.


Итак, если вы слышите частоту:

12 000 Гц – вы младше 50-ти лет

15 000 Гц – вы младше 40-ти лет

16 000 Гц – вы младше 30-ти лет

17 000 – 18 000 – вы младше 24-лет

19 000 – вы младше 20-ти лет

Если вы хотите, чтобы тест был более точным, вам стоит настроить качество видео на формат 720p или лучше на 1080p, и слушать с наушниками.

Проверка слуха (видео)


Потеря слуха

Если вы слышали все звуки, вы, скорее всего младше 20-ти лет. Результаты зависят от сенсорных рецепторов в вашем ухе, называемых волосковые клетки , которые со временем повреждаются и дегенерируют.

Такой тип потери слуха называется нейросенсорная тугоухость . Это нарушение могут вызывать целый ряд инфекций, лекарства и аутоиммунные заболевания. Внешние волосковые клетки, которые настроены на улавливание более высоких частот, обычно погибают первыми, и потому происходит эффект потери слуха, связанный с возрастом, как было продемонстрировано в данном видео.

Слух человека: интересные факты

1. Среди здоровых людей диапазон частоты, который может уловить человеческое ухо составляет от 20 (ниже чем самая низкая нота на фортепьяно) до 20 000 Герц (выше чем самая высокоая нота на маленькой флейте). Однако верхний предел этого диапазона постоянно снижается с возрастом.

2. Люди разговаривают между собой на частоте от 200 до 8000 Гц , а человеческое ухо наиболее чувствительно к частоте 1000 – 3500 Гц

3. Звуки, которые находятся выше предела слышимости человека, называют ультразвуком , а те что ниже – инфразвуком .

4. Наши уши не перестают работать даже во сне , продолжая слышать звуки. Однако наш мозг их игнорирует.

5. Звук движется со скоростью 344 метра в секунду . Звуковой удар возникает, когда объект преодолевает скорость звука. Звуковые волны впереди и позади объекта сталкиваются и создают удар.

6. Уши - самоочищающийся орган . Поры в ушном канале выделяют ушную серу, а крошечные волоски, называемые ресничками, выталкивает серу из уха

7. Звук детского плача составляет примерно 115 дБ , и это громче, чем сигнал автомобиля.

8. В Африке есть племя Маабан, которые живут в такой тишине, что они даже в старости слышат шепот на расстоянии до 300 метров .

9. Уровень звука бульдозера , работающего вхолостую, составляет около 85 дБ (децибел), что может вызвать повреждение слуха всего после одного 8-ми часового рабочего дня.

10. Сидя перед колонками на рок-концерте , вы подвергаете себя 120 дБ, что начинает повреждать слух всего через 7,5 минут.

Проверь свой слух за 5 минут, не выходя из дома!

Тематики аудио стоит рассказать о человеческом слухе несколько подробнее. Насколько субъективно наше восприятие? Можно ли протестировать свой слух? Сегодня вы узнаете самый простой способ выяснить, полностью ли ваш слух соответствует табличным значениям.

Известно, что среднестатистический человек способен воспринимать органами слуха акустические волны в диапазоне от 16 до 20 000 Гц (в зависимости от источника - 16 000 Гц). Этот диапазон и называется слышимым диапазоном.

20 Гц Гул, который только ощущается, но не слышится. Воспроизводится преимущественно топовыми аудиосистемами, так что в случае тишины виновата именно она
30 Гц Если не слышно, вероятнее всего, снова проблемы воспроизведения
40 Гц В бюджетных и среднеценовых колонках будет слышно. Но очень тихо
50 Гц Гул электрического тока. Должно быть слышно
60 Гц Слышимая (как и все до 100 Гц, скорее осязаемая за счёт переотражения от слухового канала) даже через самые дешёвые наушники и колонки
100 Гц Конец нижних частот. Начало диапазона прямой слышимости
200 Гц Средние частоты
500 Гц
1 кГц
2 кГц
5 кГц Начало диапазона высоких частот
10 кГц Если эта частота не слышна, вероятны серьёзные проблемы со слухом. Необходима консультация врача
12 кГц Неспособность слышать эту частоту может говорить о начальной стадии тугоухости
15 кГц Звук, который не способна слышать часть людей после 60 лет
16 кГц В отличие от предыдущей, эту частоту не слышат почти все люди после 60 лет
17 кГц Частота является проблемной для многих уже в среднем возрасте
18 кГц Проблемы со слышимостью этой частоты - начало возрастных изменений слуха. Теперь ты взрослый. :)
19 кГц Предельная частота среднестатистического слуха
20 кГц Эту частоту слышат только дети. Правда

»
Этого теста достаточно для приблизительной оценки, но если вы не слышите звуки выше 15 кГц, то стоит обратиться к врачу.

Обратите внимание, что проблема слышимости низких частот, скорее всего, связана с .

Чаще всего надпись на коробке в стиле «Воспроизводимый диапазон: 1–25 000 Гц» - это даже не маркетинг, а откровенная ложь со стороны производителя.

К сожалению, компании обязаны сертифицировать не все аудиосистемы, поэтому доказать, что это враньё, практически невозможно. Колонки или наушники, может быть, и воспроизводят граничные частоты… Вопрос в том, как и на какой громкости.

Проблемы со спектром выше 15 кГц - вполне обычное возрастное явление, с которым пользователи, скорее всего, столкнутся. А вот 20 кГц (те самые, за которые так борются аудиофилы) обычно слышат только дети до 8–10 лет.

Достаточно последовательно прослушать все файлы. Для более подробного исследования можно воспроизводить семплы, начиная с минимальной громкости, постепенно увеличивая её. Это позволит получить более корректный результат в том случае, если слух уже немного испорчен (напомним, что для восприятия некоторых частот необходимо превышение определённого порогового значения, которое как бы открывает, помогает слуховому аппарату слышать её).

А вы слышите весь частотный диапазон, который способен ?

Известно, что 90% информации об окружающем мире человек получает со зрением. Казалось бы, что на долю слуха остаётся не так много, но на самом деле, человеческий орган слуха - это не только высокоспециализированный анализатор звуковых колебаний, но и очень мощное средство коммуникации. Врачей и физиков давно волновал вопрос: можно ли точно определить диапазон слуха человека в разных условиях, различается ли слух у мужчин и у женщин, есть ли «особо выдающиеся» рекордсмены, которые слышат недоступные звуки, или могут производить их? Попробуем подробнее ответить на эти и некоторые другие смежные вопросы.

Но перед тем, как понять, сколько герц слышит человеческое ухо, нужно разобраться с таким фундаментальным понятием как звук, и вообще, понять что именно измеряют в герцах.

Звуковые колебания - это уникальный способ передачи энергии без передачи материи, они представляют собой упругие колебания в какой-либо среде. Когда речь идет об обычной жизни человека, такой средой является воздух. Он содержат молекулы газов, которые могут передавать акустическую энергию. Эта энергия представляет чередование полос сжатия и растяжения плотности акустической среды. В абсолютном вакууме звуковые колебания передать невозможно.

Любой звук является физической волной, и содержит все необходимые волновые характеристики. Это частота, амплитуда, время затухания, если речь идет о затухающем свободном колебании. Рассмотрим это на простых примерах. Представим себе, например, звук открытой струны соль на скрипке при извлечении его смычком. Мы можем определить следующие характеристики:

  • тихий звук или громкий. Это не что иное, как амплитуда, или сила звука. Более громкому звуку соответствует большая амплитуда колебаний, а тихому звуку - меньшая. Звук, имеющий большую силу, можно услышать на более далеком расстоянии от места возникновения;
  • длительность звука. Это всем понятно, и каждый способен отличить раскаты барабанной дроби от протяженного звучания хоральной органной мелодии;
  • высота звука, или частота звукового колебания. Именно эта основополагающая характеристика и помогает нам отличать «пищащие» звуки от басового регистра. Если бы не было частоты звука, музыка было бы возможна только в виде ритма. Частота измеряется в герцах, а 1 герц равен одному колебанию в секунду;
  • тембр звука. Он зависит от примешивания акустических дополнительных колебаний – формант, но объяснить его простыми словами очень легко: даже с закрытыми глазами мы понимаем, что звучит именно скрипка, а не тромбон, даже если у них будут совершенно одинаковые вышеперечисленные характеристики.

Тембр звука можно сравнить с многочисленными вкусовыми оттенками. Всего у нас есть горький, сладкий, кислый и соленый вкус, но этими четырьмя характеристиками далеко не исчерпываются всевозможные вкусовые ощущения. То же самое происходит и с тембром.

Остановимся подробнее на высоте звука, поскольку именно от этой характеристики и зависит в наибольшей степени острота слуха и диапазон воспринимаемых акустических колебаний. Что же такое диапазон звуковых частот?

Диапазон слуха в идеальных условиях

Частоты, воспринимаемые человеческим ухом в лабораторных, или идеальных условиях, находятся в сравнительно широкой полосе от 16 Герц до 20000 Герц (20 кГц). Всё, что ниже и выше - человеческое ухо слышать не может. Речь идет об инфразвуке и ультразвуке. Что это такое?

Инфразвук

Его слышать нельзя, но тело может ощущать его, как работу большой басовой колонки – сабвуфера. Это -инфразвуковые колебания. Все прекрасно знают, если постоянно ослаблять басовую струну на гитаре, то, несмотря на продолжающиеся вибрации, звук исчезает. Но эти колебания можно по-прежнему ощущать кончиками пальцев, прикоснувшись к струне.

В инфразвуковом диапазоне работают многие внутренние органы человека: происходит сокращение кишечника, расширение и сужение сосудов, многие биохимические реакции. Очень сильный инфразвук может вызвать серьезное болезненное состояние, даже волны панического ужаса, на этом основано действие инфразвукового оружия.

Ультразвук

На противоположном участке спектра находятся очень высокие звуки. Если звук имеет частоту выше 20 килогерц, то он перестает «пищать» и становится неслышным для уха человека в принципе. Он становится ультразвуком. Ультразвук имеет большое применение в народном хозяйстве, на нём основана ультразвуковая диагностика. С помощью ультразвука ориентируются корабли в море, обходя айсберги и избегая мелководья. Благодаря ультразвуку специалисты находят пустоты в цельнометаллических конструкциях, например, в рельсах. Все видели, как по рельсам рабочие катят специальную дефектоскопическую тележку, генерирующую и принимающую высокочастотные акустические колебания. Ультразвуком пользуются летучие мыши, чтобы находить в темноте безошибочно дорогу, не натыкаясь на стенки пещер, киты и дельфины.

Известно, что с возрастом снижается способность к различению именно высоких звуков, и лучше всего слышать их могут дети. Современные исследования показывают, что уже в возрасте 9-10 лет у детей начинает постепенно уменьшаться диапазон слуха, а у пожилых людей слышимость высоких частот значительно хуже.

Чтобы услышать, как пожилые люди воспринимают музыку, нужно просто на многополосном эквалайзере в плеере вашего сотового телефона убавить один или два ряда высоких частот. Получившееся некомфортное «бубнение, как из бочки», и будет прекрасной иллюстрацией того, как вы сами будете слышать в возрасте после 70 лет.

В снижении слуха важную роль играет неправильное питание, употребление алкоголя и курения, откладывание холестериновых бляшек на стенках сосудов. Статистика ЛОР — врачей утверждает, что люди с первой группой крови чаще и быстрее приходят к тугоухости, чем остальные. Приближает тугоухость избыточный вес, эндокринная патология.

Диапазон слуха в обычных условиях

Если отсечь «маргинальные участки» звукового спектра, то для комфортной жизни человека доступно не так уж и много: это промежуток от 200 Гц до 4000 Гц, что практически полностью соответствует диапазону человеческого голоса, от глубокого бассо — профундо, до высокого колоратурного сопрано. Тем не менее, даже при комфортных условиях, слух человека ухудшается постоянно. Обычно наибольшая чувствительность и восприимчивость у взрослых людей в возрасте до 40 лет находится на уровне 3 килогерц, а в возрасте 60 лет и более понижается до 1 килогерца.

Диапазон слуха у мужчин и женщин

В настоящее время не приветствуется половая сегрегация, но мужчины и женщины действительно различно воспринимают звук: женщины способны слышать лучше в высоком диапазоне, и возрастная инволюция звука в области высоких частот у них более медленная, а мужчины воспринимают высокие звуки несколько хуже. Логично, казалось бы, предположить, что мужчины лучше слышат в басовом регистре, но это не так. Восприятие басовых звуков, как у мужчин, так и у женщин практически одинаковое.

Но есть уникальные женщины по «генерации» звуков. Так, диапазон голоса перуанской певицы Имы Сумак (почти в пять октав) простирался от звука «си» большой октавы (123,5 Гц) до «ля» четвертой октавы (3520 Гц). Пример ее уникального вокала можно найти ниже.

При этом у мужчин и женщин существует довольно большая разница в работе речевого аппарата. Женщины производят звуки от 120 до 400 герц, а мужчины — от 80 до 150 Гц, по среднестатистическим данным.

Различные шкалы для указания диапазона слуха

Вначале мы говорили о том, что высота не является единственной характеристикой звука. Поэтому существуют различные шкалы, в соответствии с различными диапазонами. Звук, слышимый человеческим ухом, может быть, например, тихим и громким. Наиболее простая и приемлемая в клинической практике шкала громкости звука - та, которая измеряет звуковое давление, воспринимаемое барабанной перепонкой.

В основу этой шкалы положена наименьшая энергия колебания звука, которая способна трансформироваться в нервный импульс, и вызвать звуковое ощущение. Это - порог слухового восприятия. Чем порог восприятия ниже, чем чувствительность выше, и наоборот. Специалисты различают интенсивность звука, которая является физическим параметром, и громкость, который является субъективной величиной. Известно, что звук строго одной и той же интенсивности здоровый человек, и человек с тугоухостью воспримут как два разных звука, громче и тише.

Всем известно, как в кабинете ЛОР — врача пациент становится в угол, отворачивается, а врач из соседнего угла проверяет восприятие пациентом шепотной речи, произнося отдельные цифры. Это наиболее простой пример первичной диагностики тугоухости.

Известно, что еле уловимое дыхание другого человека составляет 10 децибел (дБ) интенсивности звукового давления, обычный разговор в домашней обстановке соответствует 50 дБ, вой пожарной сирены – 100 дБ, а взлетающий вблизи реактивный самолет, вблизи болевого порога — 120 децибел.

Может вызвать удивление, что вся огромная интенсивность звуковых колебаний укладывается на такой малой шкале, но это впечатление обманчиво. Это — логарифмическая шкала, и каждая последующая ступень в 10 раз интенсивнее, чем предыдущая. По такому же принципу построена шкала оценки интенсивности землетрясений, где всего 12 баллов.

Мы часто оцениваем качество звучания. При выборе микрофона, программы для обработки звука или формата записи звукового файла один из самых важных вопросов - насколько хорошо будет это звучать. Но существуют различия между характеристиками звука, которые можно измерить и теми, которые можно услышать.

Тон, тембр, октава.

Мозг воспринимает звуки определённых частот. Это связано с особенностями механизма внутреннего уха . Рецепторы, расположенные на основной мембране внутреннего уха превращают звуковые колебания в электрические потенциалы, возбуждающие волокна слухового нерва. Волокна слухового нерва обладают частотной избирательностью, обусловленной возбуждением клеток кортиева органа, находящихся в разных местах основной мембраны: высокие частоты воспринимаются вблизи овального окна, низкие – у вершины спирали.

С физической характеристикой звука, частотой, тесно связана ощущаемая нами высота тона. Частота измеряется как количество полных циклов синусоидальной волны за одну секунду (герц, Гц). Это определение частоты основано на том, что у синусоидальной волны форма колебаний волн в точности сохраняется. В реальной жизни очень немногие звуки обладают таким свойством. Однако любой звук можно представить набором синусоидальных колебаний. Такой набор мы обычно и называем тоном. То есть, тон – это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи), в котором выделяется частота синусоидальной волны, имеющая в этом наборе максимальную амплитуду. Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю интенсивность, называют белым шумом.

Постепенное увеличение частоты звуковых колебаний воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.

Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты и тренировки его слуха. Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц или даже меньше.

Спектр частот музыкального инструмента или голоса содержит последовательность равномерно расположенных пиков - гармоник. Они соответствуют частотам, кратным некоторой базовой частоте, самой интенсивной из составляющих звук синусоидальных волн.

Особый звук (тембр) музыкального инструмента (голоса) связан с относительной амплитудой различных гармоник, а воспринимаемая человеком высота тона наиболее точно передает базовая частота. Тембр, являясь субъективным отображением воспринимаемого звука, не имеет количественной оценки и характеризуется только качественно.

В «чистом» тоне присутствует только одна частота. Обычно же воспринимаемый звук состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами. Обертоны кратны частоте основного тона и меньше его по амплитуде. От распределения интенсивности по обертонам зависит тембр звука. Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе с сопутствующими обертонами.

Если частота одного звука ровно вдвое превосходит частоту другого, звуковая волна «укладывается» одна в другую. Частотное расстояние между такими звуками называется октавой. Диапазон частот, воспринимаемых человеком, 16-20 000 Гц, охватывает приблизительно десять-одиннадцать октав.

Амплитуда звуковых колебаний и громкость.

Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 Гц, среднечастотные – 500-10000 Гц и высокочастотные – свыше 10000 герц. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 4000 Гц. То есть, звуки одинаковой силы в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном или высокочастотном - как тихие или быть вовсе не слышны. Такая особенность восприятия звука связана с тем, что звуковая информация, необходимая для существования человека – речь или звуки природы – передаётся, в основном, в среднечастотном диапазоне. Таким образом, громкость – это не физический параметр, а интенсивность слухового ощущения, субъективная характеристика звука, связанная с особенностями нашего восприятия.

Слуховой анализатор воспринимает повышение амплитуды звуковой волны за счёт увеличения амплитуды вибрации основной мембраны внутреннего уха и стимуляции всё большего числа волосковых клеток с передачей электрических импульсов с большей частотой и по большему числу нервных волокон.

Наше ухо может различать интенсивность звука в диапазоне от самого слабого шепота до самого громкого шума, что примерно соответствует увеличению амплитуды движения основной мембраны в 1 млн. раз. Однако ухо интерпретирует это громадное различие в амплитуде звука приблизительно как 10000-кратное изменение. То есть, шкала интенсивности сильно «сжата» механизмом восприятия звука слухового анализатора. Это позволяет человеку интерпретировать различия в интенсивности звука в чрезвычайно широком диапазоне.

Интенсивность звука измеряется в децибелах (дБ) (1 бел равен десятикратному увеличению амплитуды). Эту же систему применяют для определения изменения громкости.

Для сравнения можно привести примерный уровень интенсивности разных звуков: едва слышимый звук (порог слышимости) 0 дБ; шёпот около уха 25-30 дБ; речь средней громкости 60-70 дБ; очень громкая речь (крик) 90 дБ; на концертах рок и поп музыки в центре зала 105-110 дБ; рядом с взлетающим авиалайнером 120 дБ.

Величина приращения громкости воспринимаемого звука имеет порог различения. Число градаций громкости, различаемое на средних частотах, не превышает 250, на низких и высоких частотах оно резко уменьшается и в среднем составляет около 150.