Як розв'язати прості нерівності. Дробно-раціональні нерівності

Одна з тем, яка вимагає від учнів максимуму уваги та посидючості, це вирішення нерівностей. Такі схожі на рівняння і при цьому сильно відрізняються від них. Тому що до їхнього вирішення потрібен особливий підхід.

Властивості, які потрібні для знаходження відповіді

Всі вони застосовуються для того, щоб замінити наявний запис рівносильним. Більшість їх схожа на те, що було в рівняннях. Але є й відмінності.

  • Функцію, визначену в ОДЗ, або будь-яке число можна додати до обох частин вихідної нерівності.
  • Аналогічним чином можливе множення, але тільки позитивну функцію чи число.
  • Якщо це дію виконується з негативними функцією чи числом, то знак нерівності слід замінити протилежний.
  • Функції, які є невід'ємними, можна зводити на позитивний ступінь.

Іноді вирішення нерівностей супроводжується діями, що дають сторонні відповіді. Їх потрібно виключити, порівнявши область ОДЗ та безліч рішень.

Використання методу інтервалів

Його суть полягає в тому, щоб звести нерівність до рівняння, в якому в правій частині стоїть нуль.

  1. Визначити область, де лежать допустимі значення змінних, тобто ОДЗ.
  2. Перетворити нерівність з допомогою математичних операцій те щоб його правої частини стояв нуль.
  3. Знак нерівності замінити на "=" і розв'язати відповідне рівняння.
  4. На числовій осі відзначити всі відповіді, які вийшли під час рішення, а також інтервали ОДЗ. При суворій нерівності точки потрібно намалювати виколотими. Якщо є знак рівності, їх потрібно зафарбувати.
  5. Визначити знак вихідної функції на кожному інтервалі, що вийшов з точок ОДЗ і його відповідей, що ділять. Якщо під час переходу через точку знак функції не змінюється, вона входить у відповідь. Інакше виключається.
  6. Граничні для ОДЗ точки потрібно додатково перевірити і потім вмикати чи ні у відповідь.
  7. Відповідь, яку виходить, потрібно записати у вигляді об'єднаних множин.

Трохи про подвійні нерівності

Вони використовують у записі одразу два знаки нерівності. Тобто деяка функція обмежена умовами одразу двічі. Такі нерівності вирішуються, як система із двох, коли вихідне розбито на частини. І методі інтервалів вказуються відповіді рішення обох рівнянь.

Для їх вирішення також можна використовувати властивості, зазначені вище. З їхньою допомогою зручно приводити нерівність до рівності нулю.

Як справи з нерівностями, в яких є модуль?

І тут рішення нерівностей використовує такі властивості, причому вони справедливі для позитивного значення «а».

Якщо «х» приймає вираз алгебри, то справедливі такі заміни:

  • |х|< a на -a < х < a;
  • |х| > a на х< -a или х >a.

Якщо нерівності несуворі, то формули теж вірні, тільки в них, крім знака більше або менше, з'являється "=".

Як здійснюється розв'язання системи нерівностей?

Це знання знадобиться у випадках, коли дано таке завдання чи є запис подвійного нерівності чи запису з'явився модуль. У такій ситуації рішенням будуть такі значення змінних, які б задовольняли всім нерівностям, що є в записі. Якщо таких чисел немає, система рішень не має.

План, яким виконується розв'язання системи нерівностей:

  • вирішити кожне з них окремо;
  • зобразити на числовій осі всі інтервали та визначити їх перетин;
  • записати відповідь системи, яка і буде об'єднанням того, що вийшло у другому пункті.

Як бути з дрібними нерівностями?

Оскільки під час їх розв'язання може знадобитися зміна знака нерівності, потрібно дуже ретельно і уважно виконувати всі пункти плану. Інакше може вийти протилежна відповідь.

Вирішення дробових нерівностей теж використовує метод інтервалів. І план дій буде таким:

  • Використовуючи описані властивості, надати дробу такий вигляд, щоб праворуч від знака залишився лише нуль.
  • Замінити нерівність на «=» і визначити точки, в яких функція дорівнюватиме нулю.
  • Відзначити їх на координатній осі. При цьому числа, що вийшли в результаті розрахунків у знаменнику, завжди виколоти. Усі інші — з умови нерівності.
  • Визначити інтервали знакостійності.
  • У відповідь записати об'єднання тих проміжків, знак яких відповідає тому, що був у вихідній нерівності.

Ситуації, коли у нерівності з'являється ірраціональність

Іншими словами, в записі є математичний корінь. Оскільки в шкільному курсі алгебри більша частина завдань йде для квадратного кореня, саме він і буде розглянутий.

Вирішення ірраціональних нерівностей зводиться до того, щоб отримати систему з двох або трьох, які будуть рівносильними вихідному.

Вихідна нерівністьумоварівносильна система
√ n(х)< m(х) m(х) менше або дорівнює 0рішень немає
m(х) більше 0

n(х) більше або дорівнює 0

n(х)< (m(х)) 2

√ n(х) > m(х)

m(х) більше або дорівнює 0

n(х) > (m(х)) 2

n(х) більше або дорівнює 0

m(х) менше 0

√n(х) ≤ m(х)m(х) менше 0рішень немає
m(х) більше або дорівнює 0

n(х) більше або дорівнює 0

n(х) ≤ (m(х)) 2

√n(х) ≥ m(х)

m(х) більше або дорівнює 0

n(х) ≥ (m(х)) 2

n(х) більше або дорівнює 0

m(х) менше 0

√ n(х)< √ m(х)

n(х) більше або дорівнює 0

n(х) менше m(х)

√n(х) * m(х)< 0

n(х) більше 0

m(х) менше 0

√n(х) * m(х) > 0

n(х) більше 0

m(х) більше 0

√n(х) * m(х) ≤ 0

n(х) більше 0

n(х) дорівнює 0

m(х) -будь-яке

√n(х) * m(х) ≥ 0

n(х) більше 0

n(х) дорівнює 0

m(х) -будь-яке

Приклади розв'язання різних видів нерівностей

Для того щоб додати наочності в теорію для розв'язання нерівностей, наведені нижче приклади.

Перший приклад. 2х - 4> 1 + х

Рішення: щоб визначити ОДЗ, досить просто уважно подивитися на нерівність. Воно утворено з лінійних функцій, тому визначено за всіх значень змінної.

Тепер із обох частин нерівності потрібно відняти (1 + х). Виходить: 2х - 4 - (1 + х) > 0. Після того як будуть розкриті дужки і наведені подібні складові нерівність набуде такого вигляду: х - 5 > 0.

Прирівнявши його до нуля, легко знайти його рішення: x = 5.

Тепер цю точку з цифрою 5 потрібно відзначити на координатному промені. Далі перевірити знаки вихідної функції. На першому інтервалі від мінус нескінченності до 5 можна взяти число 0 і підставити його в нерівність, що вийшла після перетворень. Після розрахунків виходить -7> 0. під дугою інтервалу слід підписати знак мінуса.

На наступному інтервалі від 5 до нескінченності можна вибрати число 6. Тоді виходить, що 1 > 0. Під дугою підписано знак +. Цей другий інтервал буде відповіддю нерівності.

Відповідь: x лежить в інтервалі (5; ∞).

Другий приклад. Потрібно вирішити систему двох рівнянь: 3х + 3 ≤ 2х + 1 та 3х - 2 ≤ 4х + 2.

Рішення. ОДЗ цих нерівностей теж лежить у сфері будь-яких чисел, оскільки дано лінійні функції.

Друга нерівність набуде вигляду такого рівняння: 3х - 2 - 4х - 2 = 0. Після перетворення: -х - 4 =0. З нього виходить значення для змінної, що дорівнює -4.

Ці два числа слід відзначити на осі, зобразивши інтервали. Оскільки нерівність несувора, то всі точки потрібно зафарбувати. Перший інтервал від мінус нескінченності до -4. Нехай буде обрано число -5. Перша нерівність дасть значення -3, а друга 1. Отже, цей проміжок не входить у відповідь.

Другий інтервал від -4 до -2. Можна вибрати число -3 і підставити його в обидві нерівності. У першому та у другому виходить значення -1. Значить, під дугою "-".

На останньому інтервалі від -2 до нескінченності найкращим числом є нуль. Його і слід підставити і знайти значення нерівностей. У першому виходить позитивне число, а другому нуль. Цей проміжок також потрібно виключити з відповіді.

Із трьох інтервалів розв'язанням нерівності є лише один.

Відповідь: x належить [-4; -2].

Третій приклад. |1 - x| > 2 | x - 1 |.

Рішення. Насамперед потрібно визначити точки, у яких функції звертаються у нуль. Для лівого цим числом буде 2, для правого — 1. їх слід зазначити на промені та визначити проміжки знакопостійності.

У першому інтервалі, від мінус нескінченності до 1, функція з лівої частини нерівності приймає позитивні значення, та якщо з правої — негативні. Під дугою потрібно записати поруч два знаки "+" та "-".

Наступний проміжок від 1 до 2. На ньому обидві функції набувають позитивних значень. Значить, під дугою два плюси.

Третій інтервал від 2 до нескінченності дасть такий результат: ліва функція – негативна, права – позитивна.

З урахуванням отриманих знаків необхідно обчислити значення нерівності всім проміжків.

У першому виходить така нерівність: 2 - х > - 2 (х - 1). Мінус перед двійкою у другій нерівності вийшов через те, що ця функція є негативною.

Після перетворення нерівність виглядає так: х > 0. Воно відразу дає значення змінної. Тобто із цього інтервалу у відповідь піде лише проміжок від 0 до 1.

На другому: 2 – х > 2 (х – 1). Перетворення дадуть таку нерівність: -3х + 4 більше за нуль. Його нулем буде значення x = 4/3. З урахуванням знака нерівності виходить, що х має бути менше цього числа. Отже, цей інтервал зменшується до від 1 до 4/3.

Останній дає такий запис нерівності: - (2 – х) > 2 (х – 1). Його перетворення призводить до такого: -х > 0. Тобто рівняння вірно при меншому нуля. Це означає, що на проміжку, що шукається, нерівність не дає рішень.

На перших двох проміжках граничним виявилося число 1. Його потрібно перевірити окремо. Тобто підставити у вихідну нерівність. Виходить: | 2 - 1 | > 2 |1 - 1|. Підрахунок дає що 1 більше 0. Це вірне твердження, тому одиниця входить у відповідь.

Відповідь: x лежить у проміжку (0; 4/3).

Сьогодні, друзі, не буде жодних соплів та сентиментів. Замість них я без зайвих питань відправлю вас у бій з одним із найгрізніших супротивників у курсі алгебри 8—9 класу.

Так, ви все правильно зрозуміли: йдеться про нерівності з модулем. Ми розглянемо чотири основні прийоми, за допомогою яких ви навчитеся вирішувати близько 90% таких завдань. А що з рештою 10%? Що ж, про них ми поговоримо в окремому уроці.

Однак перед тим, як розбирати якісь там прийоми, хотілося б нагадати два факти, які потрібно знати. Інакше ви ризикуєте взагалі зрозуміти матеріал сьогоднішнього уроку.

Що вже треба знати

Капітан Очевидність хіба що натякає, що з розв'язання нерівностей з модулем необхідно знати дві речі:

  1. Як вирішуються нерівності;
  2. Що таке модуль |

Почнемо із другого пункту.

Визначення модуля

Тут все просто. Є два визначення: алгебраїчне та графічне. Для початку - алгебраїчне:

Визначення. Модуль числа $x$ - це або саме це число, якщо воно невід'ємне, або число, йому протилежне, якщо вихідний $x$ - все-таки негативний.

Записується це так:

\[\left| x \right|=\left\( \begin(align) & x,\ x\ge 0, \\ & -x,\ x \lt 0. \\end(align) \right.\]

Говорячи простою мовою, модуль це «число без мінуса». І саме в цій двоїстості (десь із вихідним числом нічого не треба робити, а десь доведеться прибрати якийсь там мінус) і полягає вся складність для учнів-початківців.

Є ще геометричне визначення. Його теж корисно знати, але звертатися до нього ми будемо лише у складних і якихось спеціальних випадках, де геометричний підхід зручніший за алгебраїчну (спойлер: не сьогодні).

Визначення. Нехай на числовій прямій відзначено точку $a$. Тоді модулем $ \ left | x-a \right|$ називається відстань від точки $x$ до точки $a$ на цій прямій.

Якщо накреслити картинку, то вийде щось на кшталт цього:


Графічне визначення модуля

Так чи інакше, з визначення модуля відразу випливає його ключова властивість: модуль числа завжди є величиною невід'ємною. Цей факт буде червоною ниткою йти через всю нашу сьогоднішню розповідь.

Розв'язання нерівностей. Метод інтервалів

Тепер розберемося з нерівностями. Їх існує безліч, але наше завдання зараз — вміти вирішувати хоча б найпростіші з них. Ті, що зводяться до лінійних нерівностей, і навіть методу інтервалів.

На цю тему у мене є два великі уроки (між іншим, дуже, ДУЖЕ корисних — рекомендую вивчити):

  1. Метод інтервалів для нерівностей (особливо перегляньте відео);
  2. Дробно-раціональні нерівності - дуже об'ємний урок, але після нього у вас взагалі не залишиться будь-яких питань.

Якщо ви все це знаєте, якщо фраза «перейдемо від нерівності до рівняння» не викликає у вас невиразне бажання убитися об стіну, то ви готові: ласкаво просимо до пекла до основної теми уроку.:)

1. Нерівності виду «Модуль менше функції»

Це одне з найпоширеніших завдань з модулями. Потрібно вирішити нерівність виду:

\[\left| f \right| \lt g\]

У ролі функцій $f$ і $g$ може бути будь-що, але зазвичай це многочлены. Приклади таких нерівностей:

\[\begin(align) & \left| 2x+3 \right| \lt x+7; \\ & \left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0; \\ & \left| ((x) ^ (2))-2 \ left | x \right|-3 \right| \lt 2. \\end(align)\]

Всі вони вирішуються буквально в один рядок за схемою:

\[\left| f \right| \lt g\Rightarrow -g \lt f \lt g\quad \left(\Rightarrow \left\( \begin(align) & f \lt g, \& f \gt -g \\end(align) \right.

Неважко помітити, що позбавляємося від модуля, але натомість отримуємо подвійну нерівність (або, що теж саме, систему з двох нерівностей). Проте цей перехід враховує абсолютно всі можливі проблеми: якщо число під модулем позитивне, метод працює; якщо негативно - все одно працює; і навіть за самої неадекватної функції дома $f$ чи $g$ метод все одно спрацює.

Звичайно, виникає питання: а простіше не можна? На жаль, не можна. У цьому вся фішка модуля.

Втім, вистачить філософствувати. Давайте вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| 2x+3 \right| \lt x+7\]

Рішення. Отже, маємо класичну нерівність виду «модуль менше» — навіть перетворювати нічого. Працюємо за алгоритмом:

\[\begin(align) & \left| f \right| \lt g\Rightarrow -g \lt f \lt g; \\ & \left| 2x+3 \right| \lt x+7\Rightarrow -\left(x+7 \right) \lt 2x+3 \lt x+7 \\end(align)\]

Не поспішайте розкривати дужки, перед якими стоїть «мінус»: цілком можливо, що через поспіху ви припуститеся образливої ​​помилки.

\-x-7 \lt 2x+3 \lt x+7\]

\[\left\( \begin(align) & -x-7 \lt 2x+3 \\ & 2x+3 \lt x+7 \\ \end(align) \right.\]

\[\left\( \begin(align) & -3x \lt 10 \\ & x \lt 4 \\ \end(align) \right.\]

\[\left\( \begin(align) & x \gt -\frac(10)(3) \\ & x \lt 4 \\\end(align) \right.\]

Завдання звелося до двох елементарних нерівностей. Зазначимо їх рішення на паралельних числових прямих:

Перетин множин

Перетином цих множин і буде відповідь.

Відповідь: $x\in \left(-\frac(10)(3);4 \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right|+3\left(x+1 \right) \lt 0\]

Рішення. Це завдання вже трохи складніше. Для початку усамітнимо модуль, перенісши друге доданок вправо:

\[\left| ((x)^(2))+2x-3 \right| \lt -3\left(x+1 \right)\]

Очевидно, перед нами знову нерівність виду «модуль менший», тому позбавляємося модуля за вже відомим алгоритмом:

\[-\left(-3\left(x+1 \right) \right) \lt ((x)^(2))+2x-3 \lt -3\left(x+1 \right)\]

Ось зараз увага: хтось скаже, що я трохи збоченець із усіма цими дужками. Але ще раз нагадаю, що наша ключова мета грамотно вирішити нерівність та отримати відповідь. Пізніше, коли ви досконало освоїте все, про що розказано в цьому уроці, можете самі перекручуватись як хочете: розкривати дужки, вносити мінуси і т.д.

А ми для початку просто позбудемося подвійного мінусу зліва:

\[-\left(-3\left(x+1 \right) \right)=\left(-1 \right)\cdot \left(-3 \right)\cdot \left(x+1 \right) =3\left(x+1 \right)\]

Тепер розкриємо всі дужки у подвійній нерівності:

Переходимо до подвійної нерівності. На цей раз викладки будуть серйознішими:

\[\left\( \begin(align) & ((x)^(2))+2x-3 \lt -3x-3 \\ & 3x+3 \lt ((x)^(2))+2x -3 \\ \end(align) \right.\]

\[\left\( \begin(align) & ((x)^(2))+5x \lt 0 \\ & ((x)^(2))-x-6 \gt 0 \\ \end( align) \right.\]

Обидві нерівності є квадратними і вирішуються методом інтервалів (бо й кажу: якщо не знаєте, що це таке, краще поки не братися за модулі). Переходимо до рівняння у першій нерівності:

\[\begin(align) & ((x)^(2))+5x=0; \ & x \ left (x + 5 \ right) = 0; \\ & ((x)_(1))=0;((x)_(2))=-5. \\end(align)\]

Як бачимо, на виході вийшло неповне квадратне рівняння, яке вирішується елементарно. Тепер розберемося з другою нерівністю системи. Там доведеться застосувати теорему Вієта:

\[\begin(align) & ((x)^(2))-x-6=0; \\ & \left(x-3 \right)\left(x+2 \right)=0; \&((x)_(1))=3;((x)_(2))=-2. \\end(align)\]

Зазначаємо отримані числа на двох паралельних прямих (окрема для першої нерівності та окрема для другої):

Знову ж таки, оскільки ми вирішуємо систему нерівностей, нас цікавить перетин заштрихованих множин: $x\in \left(-5;-2 \right)$. Це є відповідь.

Відповідь: $x\in \left(-5;-2 \right)$

Думаю, після цих прикладів схема рішення гранично зрозуміла:

  1. Усамітнити модуль, перенісши всі інші доданки в протилежну частину нерівності. Таким чином, ми отримаємо нерівність виду $\left| f \right| \lt g$.
  2. Вирішити цю нерівність, позбавившись модуля за описаною вище схемою. У якийсь момент потрібно перейти від подвійної нерівності до системи з двох самостійних виразів, кожне з яких можна вирішувати окремо.
  3. Зрештою, залишиться лише перетнути рішення цих двох самостійних висловів — і все, ми отримаємо остаточну відповідь.

Аналогічний алгоритм існує й у нерівностей наступного типу, коли модуль більше функції. Однак там є кілька серйозних «але». Про ці «але» ми зараз і поговоримо.

2. Нерівності виду «Модуль більше функції»

Виглядають вони так:

\[\left| f \right| \gt g\]

Схоже на попереднє? Схоже. Проте вирішуються такі завдання зовсім по-іншому. Формально схема наступна:

\[\left| f \right| \gt g\Rightarrow \left[ \begin(align) & f \gt g, \\ & f \lt -g \end(align) \right.\]

Іншими словами, ми розглядаємо два випадки:

  1. Спочатку просто ігноруємо модуль - вирішуємо нормальну нерівність;
  2. Потім по суті розкриваємо модуль зі знаком мінус, а потім множимо обидві частини нерівності на −1, мене при цьому знак.

У цьому варіанти об'єднані квадратною дужкою, тобто. маємо сукупність двох вимог.

Зверніть увагу ще раз: перед нами не система, а сукупність, тому у відповіді безлічі об'єднуються, а не перетинаються. Це принципова відмінність від попереднього пункту!

Взагалі, з об'єднаннями та перетинами у багатьох учнів суцільна плутанина, тому давайте розберемося в цьому питанні раз і назавжди:

  • "∪" - це знак об'єднання. По суті, це стилізована літера U, яка прийшла до нас з англійської мови і є абревіатурою від Union, тобто. "Об'єднання".
  • "∩" - це знак перетину. Ця хрень звідки не прийшла, а просто виникла як протиставлення до «∪».

Щоб ще простіше було запам'ятати, просто прималюйте до цих знаків ніжки, щоб вийшли келихи (ось тільки не треба зараз звинувачувати мене в пропаганді наркоманії та алкоголізму: якщо ви всерйоз вивчаєте цей урок, то вже наркоман):

Різниця між перетином та об'єднанням множин

У перекладі російською це означає таке: об'єднання (сукупність) включає у собі елементи з обох множин, тому не менше кожного їх; а ось перетин (система) включає лише ті елементи, які одночасно знаходяться і в першій множині, і в другій. Тому перетин множин ніколи не буває більше множин-вихідників.

Так стало зрозуміліше? От і добре. Переходимо до практики.

Завдання. Розв'яжіть нерівність:

\[\left| 3x+1 \right| \gt 5-4x\]

Рішення. Діємо за схемою:

\[\left| 3x+1 \right| \gt 5-4x\Rightarrow \left[ \begin(align) & 3x+1 \gt 5-4x \\ & 3x+1 \lt -\left(5-4x \right) \\end(align) \ right.\]

Вирішуємо кожну нерівність сукупності:

\[\left[ \begin(align) & 3x+4x \gt 5-1 \\ & 3x-4x \lt -5-1 \\ \end(align) \right.\]

\[\left[ \begin(align) & 7x \gt 4 \\ & -x \lt -6 \\ \end(align) \right.\]

\[\left[ \begin(align) & x \gt 4/7\ \\ & x \gt 6 \\\end(align) \right.\]

Відзначаємо кожну отриману множину на числовій прямій, а потім об'єднуємо їх:

Об'єднання множин

Очевидно, що відповіддю буде $x\in \left(\frac(4)(7);+\infty \right)$

Відповідь: $x\in \left(\frac(4)(7);+\infty \right)$

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+2x-3 \right| \gt x\]

Рішення. Ну, що? Та нічого — все те саме. Переходимо від нерівності з модулем до сукупності двох нерівностей:

\[\left| ((x)^(2))+2x-3 \right| \gt x\Rightarrow \left[ \begin(align) & ((x)^(2))+2x-3 \gt x \\ & ((x)^(2))+2x-3 \lt -x \\end(align) \right.\]

Вирішуємо кожну нерівність. На жаль, коріння там буде не оч:

\[\begin(align) & ((x)^(2))+2x-3 \gt x; \\ ((x)^(2))+x-3 \gt 0; \& D=1+12=13; \ \ & x = \ frac (-1 \ pm \ sqrt (13)) (2). \\\end(align)\]

У другій нерівності теж трохи дичини:

\[\begin(align) & ((x)^(2))+2x-3 \lt -x; \& ((x)^(2))+3x-3 \lt 0; \ & D = 9 + 12 = 21; \ & x = \ frac (-3 \ pm \ sqrt (21)) (2). \\\end(align)\]

Тепер треба відзначити ці числа на двох осях — по одній осі кожної нерівності. Однак відзначати крапки потрібно в правильному порядку: чим більше число, тим далі зсув крапку вправо.

І ось тут на нас чекає підстава. Якщо з числами $\frac(-3-\sqrt(21))(2) \lt \frac(-1-\sqrt(13))(2)$ все ясно (доданки в чисельнику першого дробу менше доданків у чисельнику другого , Тому сума теж менше), з числами $\frac(-3-\sqrt(13))(2) \lt \frac(-1+\sqrt(21))(2)$ теж не виникне труднощів (позитивне число свідомо більше негативного), то ось з останньою парочкою все не так однозначно. Що більше: $\frac(-3+\sqrt(21))(2)$ або $\frac(-1+\sqrt(13))(2)$? Від відповіді це питання залежатиме розстановка точок на числових прямих і, власне, відповідь.

Тому давайте порівнювати:

\[\begin(matrix) \frac(-1+\sqrt(13))(2)\vee \frac(-3+\sqrt(21))(2) \\ -1+\sqrt(13)\ vee -3+\sqrt(21) \\ 2+\sqrt(13)\vee \sqrt(21) \\\end(matrix)\]

Ми усамітнили корінь, отримали невід'ємні числа з обох сторін нерівності, тому вправі звести обидві сторони квадрат:

\[\begin(matrix) ((\left(2+\sqrt(13) \right))^(2))\vee ((\left(\sqrt(21) \right))^(2)) \ \ 4+4\sqrt(13)+13\vee 21 \\ 4\sqrt(13)\vee 3 \\end(matrix)\]

Думаю, тут і їжу зрозуміло, що $4\sqrt(13) \gt 3$, тому $\frac(-1+\sqrt(13))(2) \gt \frac(-3+\sqrt(21)) (2)$, остаточно точки на осях будуть розставлені так:

Випадок негарного коріння

Нагадаю, ми вирішуємо сукупність, тому у відповідь піде об'єднання, а не перетин заштрихованих множин.

Відповідь: $x\in \left(-\infty ;\frac(-3+\sqrt(21))(2) \right)\bigcup \left(\frac(-1+\sqrt(13))(2) );+\infty \right)$

Як бачите, наша схема чудово працює як для простих завдань, так і для жорстких. Єдине «слабке місце» у такому підході — треба грамотно порівнювати ірраціональні числа (і повірте: це не лише коріння). Але питанням порівняння буде присвячено окремий (і дуже серйозний урок). А ми йдемо далі.

3. Нерівності з невід'ємними «хвістами»

От ми й дісталися найцікавішого. Це нерівності виду:

\[\left| f \right| \gt \left| g \right|\]

Взагалі кажучи, алгоритм, про який ми зараз поговоримо, вірний лише для модуля. Він працює у всіх нерівностях, де ліворуч і праворуч стоять гарантовано невід'ємні вирази:

Що робити із цими завданнями? Просто пам'ятайте:

У нерівностях з невід'ємними «хвістами» можна зводити обидві частини у будь-який натуральний ступінь. Жодних додаткових обмежень при цьому не виникне.

Насамперед нас цікавитиме зведення у квадрат — він спалює модулі та коріння:

\[\begin(align) & ((\left(\left| f \right| \right))^(2))=((f)^(2)); \& ((\left(\sqrt(f) \right))^(2))=f. \\\end(align)\]

Ось тільки не треба плутати це із вилученням кореня з квадрата:

\[\sqrt(((f)^(2)))=\left| f \right|\ne f\]

Безліч помилок було допущено в той момент, коли учень забував ставити модуль! Але це зовсім інша історія (це ніби ірраціональні рівняння), тому не зараз у це поглиблюватимемося. Давайте краще вирішимо кілька завдань:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right|\ge \left| 1-2x \right|\]

Рішення. Відразу зауважимо дві речі:

  1. Це несувора нерівність. Крапки на числовій прямій будуть виколоті.
  2. Обидві сторони нерівності явно невід'ємні (ця властивість модуля: $ \ left | f \ left (x \ right) \ right | \ ge 0 $).

Отже, можемо звести обидві частини нерівності в квадрат, щоб позбавитися модуля і вирішувати завдання звичайним методом інтервалів:

\[\begin(align) & ((\left(\left| x+2 \right| \right))^(2))\ge ((\left(\left| 1-2x \right| \right) ) ^ (2)); \\ & ((\left(x+2 \right))^(2))\ge ((\left(2x-1 \right))^(2)). \\\end(align)\]

На останньому кроці я трохи схитрував: змінив послідовність доданків, скориставшись парністю модуля (по суті, помножив вираз $1-2x$ на -1).

\[\begin(align) & ((\left(2x-1 \right))^(2))-((\left(x+2 \right))^(2))\le 0; \\ & \left(\left(2x-1 \right)-\left(x+2 \right) \right)\cdot \left(\left(2x-1 \right)+\left(x+2 \) right) \right)\le 0; \\ & \left(2x-1-x-2 \right)\cdot \left(2x-1+x+2 \right)\le 0; \\ & \left(x-3 \right)\cdot \left(3x+1 \right)\le 0. \\end(align)\]

Розв’язуємо інтервальним методом. Переходимо від нерівності до рівняння:

\[\begin(align) & \left(x-3 \right)\left(3x+1 \right)=0; \((x)_(1))=3;((x)_(2))=-\frac(1)(3). \\\end(align)\]

Зазначаємо знайдене коріння на числовій прямій. Ще раз: усі крапки зафарбовані, оскільки вихідна нерівність — не сувора!

Звільнення від знаку модуля

Нагадаю для особливо затятих: знаки ми беремо з останньої нерівності, яка була записана перед переходом до рівняння. І зафарбовуємо області, які потрібні в тій же нерівності. У нашому випадку це $\left(x-3 \right)\left(3x+1 \right)\le 0$.

Ну ось і все. Завдання вирішено.

Відповідь: $x\in \left[ -\frac(1)(3);3 \right]$.

Завдання. Розв'яжіть нерівність:

\[\left| ((x)^(2))+x+1 \right|\le \left| ((x)^(2))+3x+4 \right|\]

Рішення. Робимо все те саме. Я не коментуватиму — просто подивіться на послідовність дій.

Зводимо у квадрат:

\[\begin(align) & ((\left(\left| ((x)^(2))+x+1 \right| \right))^(2))\le ((\left(\left) |((x)^(2))+3x+4 \right| \right))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))\le ((\left(((x)^(2))+3x+4 \right))^(2)); \\ & ((\left(((x)^(2))+x+1 \right))^(2))-((\left(((x)^(2))+3x+4 \) right))^(2))\le 0; \\ & \left(((x)^(2))+x+1-((x)^(2))-3x-4 \right)\times \\ & \times \left(((x) ^(2))+x+1+((x)^(2))+3x+4 \right)\le 0; \\ & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)\le 0. \\\end(align)\]

Метод інтервалів:

\[\begin(align) & \left(-2x-3 \right)\left(2((x)^(2))+4x+5 \right)=0 \\ & -2x-3=0\ Rightarrow x=-1,5; \\ & 2((x)^(2))+4x+5=0\Rightarrow D=16-40 \lt 0\Rightarrow \varnothing. \\\end(align)\]

Всього один корінь на числовій прямій:

Відповідь - цілий інтервал

Відповідь: $x\in \left[ -1,5;+\infty \right)$.

Невелике зауваження щодо останнього завдання. Як точно зауважив один мій учень, обидва підмодульні вирази в даній нерівності свідомо позитивні, тому знак модуля можна без шкоди для здоров'я опустити.

Але це зовсім інший рівень мислення і інший підхід – це умовно можна назвати методом наслідків. Про нього в окремому уроці. А зараз перейдемо до фінальної частини сьогоднішнього уроку та розглянемо універсальний алгоритм, який працює завжди. Навіть тоді, коли всі попередні підходи виявилися безсилими.

4. Метод перебору варіантів

А якщо всі ці прийоми не допоможуть? Якщо нерівність не зводиться невід'ємним хвостам, якщо усамітнити модуль не виходить, якщо взагалі біль-сум сум?

Тоді на сцену виходить "важка артилерія" всієї математики - метод перебору. Стосовно нерівностей з модулем він виглядає так:

  1. Виписати всі підмодульні вирази та прирівняти їх до нуля;
  2. Розв'язати отримані рівняння і відзначити знайдене коріння на одній числовій прямій;
  3. Пряма розіб'ється на кілька ділянок, усередині якого кожен модуль має фіксований знак і тому однозначно розкривається;
  4. Вирішити нерівність на кожній такій ділянці (можна окремо розглянути корені-кордони, отримані в пункті 2 для надійності). Результати об'єднати – це і буде відповідь.

Ну як? Слабко? Легко! Лише довго. Подивимося практично:

Завдання. Розв'яжіть нерівність:

\[\left| x+2 \right| \lt \left| x-1 \right|+x-\frac(3)(2)\]

Рішення. Ця хрень не зводиться до нерівностей виду $ \ left | f \right| \lt g$, $\left| f \right| \gt g$ або $\left| f \right| \lt \left| g \right|$, тому діємо напролом.

Виписуємо підмодульні вирази, прирівнюємо їх до нуля і знаходимо коріння:

\[\begin(align) & x+2=0\Rightarrow x=-2; \\ & x-1 = 0 \ Rightarrow x = 1. \\\end(align)\]

Всього маємо два корені, які ділять числову пряму на три ділянки, всередині яких кожен модуль розкривається однозначно:

Розбиття числової прямої нулями підмодульних функцій

Розглянемо кожну ділянку окремо.

1. Нехай $x \lt -2$. Тоді обидва підмодульні вирази негативні, і вихідна нерівність перепишеться так:

\[\begin(align) & -\left(x+2 \right) \lt -\left(x-1 \right)+x-1,5 \\ & -x-2 \lt -x+1+ x-1,5 \\ & x \gt 1,5 \\end(align)\]

Здобули досить просте обмеження. Перетнемо його з вихідним припущенням, що $x \lt -2$:

\[\left\( \begin(align) & x \lt -2 \\ & x \gt 1,5 \\end(align) \right.\Rightarrow x\in \varnothing \]

Очевидно, що змінна $x$ не може одночасно бути меншою за −2, але більше за 1,5. Рішень на цій ділянці немає.

1.1. Окремо розглянемо прикордонний випадок $x=-2$. Просто підставимо це число у вихідну нерівність і перевіримо: чи виконується вона?

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=-2) ) \\ & 0 \lt \left| -3 \right|-2-1,5; \ & 0 \lt 3-3,5; \\ & 0 \lt -0,5 \Rightarrow \varnothing. \\\end(align)\]

Очевидно, що ланцюжок обчислень привів нас до невірної нерівності. Отже, вихідна нерівність теж неправильна, і $x=-2$ не входить у відповідь.

2. Нехай тепер $-2 \lt x \lt 1$. Лівий модуль вже розкриється з плюсом, але правий все ще з мінусом. Маємо:

\[\begin(align) & x+2 \lt -\left(x-1 \right)+x-1.5 \\ & x+2 \lt -x+1+x-1.5 \\& x \lt - 2.5 \\\end(align)\]

Знову перетинаємо з вихідною вимогою:

\[\left\( \begin(align) & x \lt -2,5 \\ & -2 \lt x \lt 1 \end(align) \right.\Rightarrow x\in \varnothing \]

І знову порожня безліч рішень, оскільки немає таких чисел, які одночасно менші за −2,5, але більші за −2.

2.1. І знову окремий випадок: $ x = 1 $. Підставляємо у вихідну нерівність:

\[\begin(align) & ((\left. \left| x+2 \right| \lt \left| x-1 \right|+x-1,5 \right|)_(x=1)) \\ & \left| 3 \right| \lt \left| 0 \right|+1-1,5; \ & 3 \lt -0,5; \\ & 3 \lt -0,5 \Rightarrow \varnothing. \\end(align)\]

Аналогічно попередньому «приватному випадку» число $x=1$ явно не входить у відповідь.

3. Останній шматок прямий: $x \gt 1$. Тут усі модулі розкриваються зі знаком «плюс»:

\[\begin(align) & x+2 \lt x-1+x-1,5 \\ & x+2 \lt x-1+x-1,5 \\ & x \gt 4,5 \\ \end(align)\]

І знову перетинаємо знайдену множину з вихідним обмеженням:

\[\left\( \begin(align) & x \gt 4,5 \\ & x \gt 1 \\end(align) \right.\Rightarrow x\in \left(4,5;+\infty) \right)\]

Ну нарешті! Ми знайшли інтервал, який і буде відповіддю.

Відповідь: $x\in \left(4,5;+\infty \right)$

Насамкінець — одне зауваження, яке, можливо, убереже вас від дурних помилок під час вирішення реальних завдань:

Розв'язання нерівностей з модулями зазвичай є суцільні множини на числовій прямій - інтервали та відрізки. Набагато рідше трапляються ізольовані точки. І ще рідше трапляється так, що меж рішення (кінець відрізка) збігається з межею діапазону, що розглядається.

Отже, якщо кордони (ті самі «приватні випадки») не входять у відповідь, то майже напевно не увійдуть у відповідь і області зліва-праворуч від цих кордонів. І навпаки: кордон увійшов у відповідь — отже, і якісь області навколо неї також будуть відповідями.

Пам'ятайте про це, коли ви перевіряєте свої рішення.

Вирішення нерівностей онлайн

Перед тим як вирішувати нерівності, необхідно добре засвоїти, як вирішуються рівняння .

Не важливо якою є нерівність – суворою () або несуворою (≤, ≥), насамперед приступають до розв'язання рівняння, замінивши знак нерівності на рівність (=).

Пояснимо, що означає вирішити нерівність?

Після вивчення рівнянь у голові у школяра складається така картина: необхідно визначити такі значення змінної, у яких обидві частини рівняння приймають однакові значення. Іншими словами, знайти всі точки, у яких виконується рівність. Все вірно!

Коли говорять про нерівності, мають на увазі знаходження інтервалів (відрізків), у яких виконується нерівність. Якщо в нерівності дві змінні, то рішенням будуть не інтервали, а якісь площі на площині. Чи здогадаєтеся самі, що буде рішенням нерівності від трьох змінних?

Як розв'язувати нерівності?

Універсальним способом вирішення нерівностей вважають метод інтервалів (він же метод проміжків), який полягає у визначенні всіх інтервалів, у межах яких виконуватиметься задана нерівність.

Не вдаючись у тип нерівності, у разі це суть, потрібно вирішити відповідне рівняння і його коріння з наступним позначенням цих рішень на числової осі.

Як правильно записувати розв'язання нерівності?

Коли ви визначили інтервали розв'язків нерівності, потрібно грамотно виписати саме рішення. Чи є важливий нюанс – чи входять межі інтервалів у рішення?

Тут все просто. Якщо рішення рівняння задовольняє ОДЗ і нерівність є суворим, межа інтервалу входить у рішення нерівності. Інакше – ні.

Розглядаючи кожен інтервал, рішенням нерівності може бути сам інтервал, або напівінтервал (коли одна з його кордонів задовольняє нерівності), або відрізок – інтервал разом із його межами.

Важливий момент

Не думайте, що розв'язанням нерівності можуть бути лише інтервали, напівінтервали та відрізки. Ні, у рішення можуть входити і окремі точки.

Наприклад, у нерівності |x|≤0 лише одне рішення – це точка 0.

А в нерівності | x |

Навіщо потрібен калькулятор нерівностей?

Калькулятор нерівностей видає правильну підсумкову відповідь. При цьому здебільшого наводиться ілюстрація числової осі або площини. Видно, чи входять межі інтервалів у розв'язання чи ні – крапки відображаються зафарбованими чи проколотими.

Завдяки онлайн калькулятору нерівностей можна перевірити чи правильно ви знайшли коріння рівняння, позначили їх на числовій осі та перевірили на інтервалах (і межах) виконання умови нерівності?

Якщо ваша відповідь розходиться з відповіддю калькулятора, то однозначно потрібно перевірити ще раз своє рішення і виявити допущену помилку.

Лінійними називаються нерівностіліва і права частина яких є лінійними функціями щодо невідомої величини. До них відносяться, наприклад, нерівності:

2х-1-х +3; 7х0;

5 >4 - 6x 9- x< x + 5 .

1) Суворі нерівності: ax +b>0або ax + b<0

2) Нестрогі нерівності: ax +b≤0або ax + b0

Розберемо таке завдання. Одна із сторін паралелограма становить 7см. Якою має бути довжина іншої сторони, щоб периметр паралелограма був більшим за 44 см?

Нехай потрібна сторона складе хсм. У такому разі периметр паралелограма буде представлений (14 + 2х) см. Нерівність 14 + 2х > 44 є математичною моделлю задачі про периметр паралелограма. Якщо в цій нерівності замінити змінну хна, наприклад, число 16, то отримаємо правильну числову нерівність 14 + 32 > 44. У такому разі кажуть, що число 16 є розв'язком нерівності 14 + 2х > 44.

Розв'язанням нерівностіназвіть значення змінної, яке перетворює її на справжню числову нерівність.

Отже, кожне із чисел 15,1; 20;73 виступають розв'язком нерівності 14 + 2х > 44, а число 10, наприклад, не є його розв'язком.

Розв'язати нерівністьозначає встановити всі рішення чи довести, що рішень немає.

Формулювання розв'язання нерівності подібне до формулювання кореня рівняння. І все ж таки не прийнято позначати «корінь нерівності».

Властивості числових рівностей допомагали вирішувати рівняння. Так само властивості числових нерівностей допоможуть вирішувати нерівності.

Вирішуючи рівняння, ми змінюємо його іншим, простішим рівнянням, але рівнозначним заданому. За такою схемою знаходять відповідь і нерівності. При зміні рівняння на рівнозначне йому рівняння користуються теоремою про перенесення доданків з однієї частини рівняння в протилежну і про множення обох частин рівняння на те саме відмінне від нуля число. При розв'язанні нерівності є суттєва відмінність його з рівнянням, яке полягає в тому, що будь-яке рішення рівняння можна перевірити просто підстановкою у вихідне рівняння. У нерівностях такий спосіб відсутній, оскільки незліченна безліч рішень підставити у вихідну нерівність неможливо. Тому є важливе поняття, ось ці стрілочки<=>- це знак еквівалентних, чи рівносильних, перетворень. Перетворення називаються рівносильними,або еквівалентнимиякщо вони не змінюють безліч рішень.

Подібні правила розв'язання нерівностей.

Якщо якесь доданок перемістити з однієї частини нерівності в іншу, замінивши при цьому його знак на протилежний, то отримаємо нерівність, еквівалентну даному.

Якщо обидві частини нерівності помножити (розділити) на те саме позитивне число, то отримаємо нерівність, еквівалентну даному.

Якщо обидві частини нерівності помножити (розділити) на те саме негативне число, замінивши при цьому знак нерівності на протилежний, то отримаємо нерівність, еквівалентну даному.

Використовуючи ці правилаобчислимо нижченаведені нерівності.

1) Розберемо нерівність 2x - 5 > 9.

Це лінійна нерівність, знайдемо його рішення та обговоримо основні поняття.

2x - 5 > 9<=>2x > 14(5 перенесли до лівої частини з протилежним знаком), далі поділили все на 2 і маємо x > 7. Нанесемо багато рішень на вісь x

Нами отримано позитивно спрямований промінь. Зазначимо безліч рішень або як нерівності x > 7, або як інтервалу х(7; ∞). А що є приватним рішенням цієї нерівності? Наприклад, x = 10- це приватне вирішення цієї нерівності, x = 12- це також приватне вирішення цієї нерівності.

Приватних рішень багато, але наше завдання знайти всі рішення. А рішень, як правило, безліч.

Розберемо приклад 2:

2) Вирішити нерівність 4a - 11 > a + 13.

Вирішимо його: аперемістимо в один бік, 11 перемістимо в інший бік, отримаємо 3a< 24, и в результате после деления обеих частей на 3 нерівність має вигляд a<8 .

4a - 11 > a + 13<=>3a< 24 <=>a< 8 .

Теж відобразимо безліч a< 8 , але вже на осі а.

Відповідь чи пишемо як нерівності a< 8, либо а(-∞;8), 8 не вмикається.

див. також Розв'язання задачі лінійного програмування графічно, Канонічна форма задач лінійного програмування

Система обмежень такого завдання складається з нерівностей від двох змінних:
і цільова функція має вигляд F = C 1 x + C 2 y, що необхідно максимізувати.

Відповімо на запитання: які пари чисел ( x; y) є рішеннями системи нерівностей, т. е. задовольняють кожному з нерівностей одночасно? Інакше кажучи, що означає вирішити систему графічно?
Попередньо необхідно зрозуміти, що є рішенням однієї лінійної нерівності з двома невідомими.
Вирішити лінійну нерівність із двома невідомими – це означає визначити всі пари значень невідомих, у яких нерівність виконується.
Наприклад, нерівності 3 x – 5y≥ 42 задовольняють пари ( x , y): (100, 2); (3, –10) тощо. буд. Завдання полягає у знаходженні всіх таких пар.
Розглянемо дві нерівності: ax + byc, ax + byc. Пряма ax + by = cділить площину на дві напівплощини так, що координати точок однієї з них задовольняють нерівності ax + by >c, а інший нерівності ax + +by <c.
Справді, візьмемо крапку з координатою x = x 0; тоді точка, що лежить на прямій і має абсцису x 0 , має ординату

Нехай для певності a< 0, b>0, c>0. Усі крапки з абсцисою x 0 , що лежать вище P(наприклад, точка М), мають y M>y 0 , а всі крапки, що лежать нижче крапки P, з абсцисою x 0 , мають y N<y 0 . Оскільки x 0 -довільна точка, то завжди з одного боку від прямої будуть знаходитися точки, для яких ax+ by > c, що утворюють напівплощину, а з іншого боку – точки, для яких ax + by< c.

Малюнок 1

Знак нерівності у напівплощині залежить від чисел a, b , c.
Звідси випливає такий спосіб графічного розв'язання систем лінійних нерівностей двох змінних. Для вирішення системи необхідно:

  1. Для кожної нерівності виписати рівняння, що відповідає даній нерівності.
  2. Побудувати прямі графіки функцій, що задаються рівняннями.
  3. Для кожної прямої визначити напівплощину, що задається нерівністю. Для цього взяти довільну точку, що не лежить на прямій, підставити її координати в нерівність. якщо нерівність правильна, то напівплощина, що містить обрану точку, і є рішенням вихідної нерівності. Якщо нерівність неправильна, то напівплощина з іншого боку прямий є безліччю рішень даної нерівності.
  4. Щоб вирішити систему нерівностей, необхідно знайти область перетину всіх напівплощин, які є рішенням кожної нерівності системи.

Ця область може бути порожньою, тоді система нерівностей немає рішень, несовместна. Інакше кажуть, що система є спільною.
Рішень може бути кінцеве число і безліч. Область може бути замкнутий багатокутник або бути необмеженою.

Розглянемо три відповідні приклади.

Приклад 1. Вирішити графічну систему:
x + y – 1 ≤ 0;
–2x – 2y + 5 ≤ 0.

  • розглянемо рівняння x+y–1=0 та –2x–2y+5=0 , що відповідають нерівностям;
  • побудуємо прямі, що задаються цими рівняннями.

Малюнок 2

Визначимо напівплощини, що задаються нерівностями. Візьмемо довільну точку, хай (0; 0). Розглянемо x+ y– 1 0, підставимо точку (0; 0): 0 + 0 – 1 ≤ 0. отже, у тій напівплощині, де лежить точка (0; 0), x + y 1 ≤ 0, тобто. напівплощина, що лежить нижче за пряму, є рішенням першої нерівності. Підставивши цю точку (0; 0), по-друге, отримаємо: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, тобто. у напівплощині, де лежить точка (0; 0), -2 x – 2y+ 5≥ 0, а нас запитували, де –2 x – 2y+ 5 ≤ 0, отже, в іншій напівплощині – у тій, що вище за пряму.
Знайдемо перетин цих двох напівплощин. Прямі паралельні, тому площини ніде не перетинаються, отже система даних нерівностей розв'язків немає, несовместна.

Приклад 2. Знайти графічно розв'язання системи нерівностей:

Малюнок 3
1. Випишемо рівняння, що відповідають нерівностям, і збудуємо прямі.
x + 2y– 2 = 0

x 2 0
y 0 1

yx – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Вибравши точку (0; 0), визначимо знаки нерівностей у напівплощинах:
0 + 2 ∙ 0 – 2 ≤ 0, тобто. x + 2y– 2 ≤ 0 у напівплощині нижче прямої;
0 – 0 – 1 ≤ 0, тобто. yx– 1 ≤ 0 у напівплощині нижче прямої;
0 + 2 = 2 ≥ 0, тобто. y+ 2 ≥ 0 у напівплощині вище прямої.
3. Перетином цих трьох напівплощин буде область, що є трикутником. Неважко знайти вершини області, як точки перетину відповідних прямих


Таким чином, А(–3; –2), У(0; 1), З(6; –2).

Розглянемо ще один приклад, в якому область рішення системи, що вийшла, не обмежена.