Всё, что нужно знать о ЕГЭ по информатике. Как решать задания по информатике

Какой язык программирования выбрать, на каких задачах стоит сосредоточиться и как распределить время на экзамене

Преподаёт информатику в Фоксфорде

Разные вузы требуют разные вступительные экзамены по IT-направлениям. Где-то нужно сдавать физику, где-то – информатику. К какому экзамену готовиться – решать вам, но стоит иметь в виду, что конкурс на специальности, где надо сдавать физику, обычно ниже, чем на специальностях, где требуется ЕГЭ по информатике, т.е. вероятность поступить «через физику» больше.

Зачем тогда сдавать ЕГЭ по информатике?

  • К нему быстрее и проще подготовиться, чем к физике.
  • Вы сможете выбирать из большего количества специальностей.
  • Вам будет легче учиться по выбранной специальности.

Что нужно знать о ЕГЭ по информатике

ЕГЭ по информатике состоит из двух частей. В первой части 23 задачи с кратким ответом, во второй – 4 задачи с развёрнутым ответом. В первой части экзамена 12 заданий базового уровня, 10 заданий повышенного уровня и 1 задание высокого уровня. Во второй части – 1 задание повышенного уровня и 3 – высокого.

Решение задач из первой части позволяет набрать 23 первичных балла – по одному баллу за выполненное задание. Решение задач второй части добавляет 12 первичных баллов (3, 2, 3 и 4 балла за каждую задачу соответственно). Таким образом, максимум первичных баллов, которые можно получить за решение всех заданий – 35.

Первичные баллы переводятся в тестовые, которые и являются результатом ЕГЭ. 35 первичных баллов = 100 тестовым баллам за экзамен. При этом за решение задач из второй части экзамена начисляется больше тестовых баллов, чем за ответы на задачи первой части. Каждый первичный балл, полученный за вторую часть ЕГЭ, даст вам 3 или 4 тестовых балла, что в сумме составляет около 40 итоговых баллов за экзамен.

Это означает, что при выполнении ЕГЭ по информатике необходимо уделить особое внимание решению задач с развёрнутым ответом: №24, 25, 26 и 27. Их успешное выполнение позволит набрать больше итоговых баллов. Но и цена ошибки во время их выполнения выше – потеря каждого первичного балла чревата тем, что вы не пройдёте по конкурсу, ведь 3-4 итоговых балла за ЕГЭ при высокой конкуренции на IT-специальности могут стать решающими.

Как готовиться к решению задач из первой части

  • Уделите особое внимание задачам № 9, 10, 11, 12, 15, 18, 20, 23. Именно эти задачи, согласно анализу результатов прошлых лет, особенно сложны. Трудности с решением этих задач испытывают не только те, у кого общий балл за ЕГЭ по информатике получился низким, но и «хорошисты», и «отличники».
  • Выучите наизусть таблицу степеней числа 2.
  • Помните о том, что Кбайты в задачах означают кибибайты, а не килобайты. 1 кибибайт = 1024 байта. Это поможет избежать ошибок при вычислениях.
  • Тщательно изучите варианты ЕГЭ предыдущих лет. Экзамен по информатике - один из самых стабильных, это означает, что для подготовки можно смело использовать варианты ЕГЭ за последние 3-4 года.
  • Познакомьтесь с разными вариантами формулировки заданий. Помните о том, что незначительное изменение формулировки всегда приводят к ухудшению результатов экзамена.
  • Внимательно читайте условие задачи. Большинство ошибок при выполнении заданий связано с неверным пониманием условия.
  • Учитесь самостоятельно проверять выполненные задания и находить ошибки в ответах.

Что нужно знать о решении задач с развёрнутым ответом

24 задача - на поиск ошибки

25 задача требует составления простой программы

26 задача - на теорию игр

27 задача - необходимо запрограммировать сложную программу

Основную трудность на экзамене представляет 27 задача. Ее решает только 60-70% пишущих ЕГЭ по информатике. Ее особенность заключается в том, что к ней невозможно подготовиться заранее. Каждый год на экзамен выносится принципиально новая задача. При решении задачи №27 нельзя допустить ни одной смысловой ошибки.

Как рассчитывать время на экзамене

Ориентируйтесь на данные, которые приведены в спецификации контрольных измерительных материалов для проведения ЕГЭ по информатике. В ней указано примерное время, отведенное на выполнение заданий первой и второй части экзамена.

ЕГЭ по информатике длится 235 минут

Из них 90 минут отводится на решение задач из первой части. В среднем на каждую задачу из первой части уходит от 3 до 5 минут. На решение задачи №23 требуется 10 минут.

Остается 145 минут на решение заданий второй части экзамена, при этом для решения последней задачи №27 понадобится не менее 55 минут. Эти расчеты выполнены специалистами Федерального института педагогических измерений и основаны на результатах экзаменов прошлых лет, поэтому к ним следует отнестись серьезно и использовать в качестве ориентира на экзамене.

Языки программирования – какой выбрать

  1. BASIC. Это устаревший язык, и хотя его до сих пор изучают в школах, тратить время на его освоение уже нет смысла.
  2. Школьный алгоритмический язык программирования. Он разработан специально для раннего обучения программированию, удобен для освоения начальных алгоритмов, но практически не содержит глубины, в нем некуда развиваться.
  3. Pascal. По-прежнему является одним из самых распространённых языков программирования для обучения в школах и вузах, но и его возможности сильно ограничены. Pascal вполне подходит в качестве языка написания ЕГЭ.
  4. С++. Универсальный язык, один из самых быстрых языков программирования. На нём сложно учиться, зато в практическом применении его возможности очень широки.
  5. Python . Его легко изучать на начальном уровне, единственное, что требуется – знание английского языка. Вместе с тем, при углубленном изучении Python предоставляет программисту не меньше возможностей, чем С++. Начав изучение «Питона» ещё в школе, вы будете использовать его и в дальнейшем, вам не придётся переучиваться на другой язык, чтобы достичь новых горизонтов в программировании. Для сдачи ЕГЭ достаточно знать «Питон» на базовом уровне.

Полезно знать

  • Работы по информатике оценивают два эксперта. Если результаты оценки экспертов расходятся на 1 балл, выставляется больший из двух баллов. Если расхождение 2 балла и более – работу перепроверяет третий эксперт.
  • Полезный сайт для подготовки к ЕГЭ по информатике –

У исполнителя Квадратор две команды, которым присвоены номера: 1 - прибавь 3; 2 - возведи в квадрат. Первая из них увеличивает число на экране на 3, вторая возводит его во вторую степень. Исполнитель работает только с натуральными числами. Составьте алгоритм получения из числа A числа B, содержащий не более K команд. В ответе запишите только номера команд. Если таких алгоритмов более одного, то запишите любой из них.

Вася составляет слова, в которых встречаются только буквы

Вася составляет N-буквенные слова, в которых встречаются только буквы A, B, C, причём буква A появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. Сколько существует таких слов, которые может написать Вася?

Игорь составляет таблицу кодовых слов для передачи сообщений

Игорь составляет таблицу кодовых слов для передачи сообщений, каждому сообщению соответствует своё кодовое слово. В качестве кодовых слов Игорь использует N-буквенные слова, в которых есть только буквы A, B, C, причём буква A появляется ровно 1 раз. Каждая из других допустимых букв может встречаться в кодовом слове любое количество раз или не встречаться совсем. Сколько различных кодовых слов может использовать Игорь?

Задание входит в ЕГЭ по информатике для 11 класса под номером 10.

Алгоритм вычисления значения функции F(n)

Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями. Чему равно значение функции F(K)? В ответе запишите только натуральное число.

Задание входит в ЕГЭ по информатике для 11 класса под номером 11.

Сколько секунд потребуется модему, передающему сообщения

Сколько секунд потребуется модему, передающему сообщения со скоростью N бит/с, чтобы передать цветное растровое изображение размером AхB пикселей, при условии, что цвет каждого пикселя кодируется K битами? (Впишите в бланк только число.)

Задание входит в ЕГЭ по информатике для 11 класса под номером 9.

Дешифровщику необходимо восстановить поврежденный фрагмент сообщения

Дешифровщику необходимо восстановить поврежденный фрагмент сообщения, состоящий из 4-х символов. Имеется достоверная информация, что использовано не более пяти букв (A, B, C, D, E), причем на третьем месте стоит один из символов... На четвертом месте – одна из букв... На первом месте – одна из букв... На втором – ... Появилась дополнительная информация, что возможен один из четырех вариантов. Какой?

Задание входит в ЕГЭ по информатике для 11 класса под номером 6.

Метеорологическая станция ведет наблюдение за влажностью воздуха

Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100 процентов, которое записывается при помощи минимально возможного количества бит. Станция сделала N измерений. Определите информационный объем результатов наблюдений.

Какой вид приобретет формула, после того как ячейку скопируют

В ячейке записана формула. Какой вид приобретет формула, после того как ячейку X скопируют в ячейку Y? Примечание: знак $ используется для обозначения абсолютной адресации.

Задание входит в ЕГЭ по информатике для 11 класса под номером 7.

Находясь в корневом каталоге только что отформатированного диска

Находясь в корневом каталоге только что отформатированного диска, ученик создал K каталогов. Затем в каждом из созданных каталогов он создал еще по N каталогов. Сколько всего оказалось на диске каталогов, включая корневой?

Задание входит в ЕГЭ по информатике для 11 класса.

На месте преступления были обнаружены четыре обрывка бумаги

На месте преступления были обнаружены четыре обрывка бумаги. Следствие установило, что на них записаны фрагменты одного IP-адреса. Криминалисты обозначили эти фрагменты буквами А, Б, В и Г. Восстановите IP-адрес. В ответе укажите последовательность букв, обозначающих фрагменты, в порядке, соответствующем IP-адресу.

Петя записал IP-адрес школьного сервера на листке бумаги

Петя записал IP-адрес школьного сервера на листке бумаги и положил его в карман куртки. Петина мама случайно постирала куртку вместе с запиской. После стирки Петя обнаружил в кармане четыре обрывка с фрагментами IP-адреса. Эти фрагменты обозначены буквами А, Б, В и Г. Восстановите IP-адрес. В ответе укажите последовательность букв, обозначающих фрагменты, в порядке, соответствующем IP-адресу.

Задание входит в ЕГЭ по информатике для 11 класса под номером 12.

При регистрации в компьютерной системе каждому пользователю выдаётся пароль

При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий цифры и заглавные буквы. Таким образом, используется K различных символов. Каждый такой пароль в компьютерной системе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти, отводимый этой системой для записи N паролей.

Задание входит в ЕГЭ по информатике для 11 класса под номером 13.

В некоторой стране автомобильный номер составляют из заглавных букв

В некоторой стране автомобильный номер длиной K символов составляют из заглавных букв (используется M различных букв) и любых десятичных цифр. Буквы с цифрами могут следовать в любом порядке. Каждый такой номер в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти, отводимый этой программой для записи N номеров.

Задание входит в ЕГЭ по информатике для 11 класса под номером 13.

КОНСУЛЬТАЦИЯ ПО РЕШЕНИЮ ЗАДАЧ ПО ИНФОРМАТИКЕ
В наше время ваш навык решения какой бы то ни было задачи зависит от умения правильно формулировать поисковый запрос для Яндекс или Google. Всё уже в большинстве случаев решено за вас, осталось только найти, где это решение выложено на всеобщее обозрение. Однако не всегда решение бывает подробным, не всегда задача точь-в-точь, как ваша. Иногда нам лень по шаблону слегка подстроить решение под свой случай.

Как в таком случае решать задачи по информатике? Обратитесь к нам на нашем сайте — сайт в течение часа после публикации заявки, для вас будет найден человек, который качественно, в уговоренный вами срок и за приемлемую цену окажет консультацию.

В качестве решения можете даже не сомневаться. Возможно, преподаватель, к которому вы это задание понесёте, сам и окажется исполнителем.

Как решить задачу по информатике бесплатно?


Вариантов тут несколько.

  1. Можно попросить кого-нибудь сделать это за «спасибо». Например, если вы девушка, вполне можете сыграть на симпатии к себе со стороны какого-нибудь «ботана». А вот парням без выдающейся внешности в этом смысле повезло меньше.
  2. Если постараться, то, скорее всего, решение в готовом или почти готовом виде вы найдёте в интернете. Возможно, цифры надо будет где-нибудь поставить другие или посчитать что-то иначе, чем в примере разбора, найденном вами.
  3. Можно попробовать поговорить с преподавателем, чтобы он дал определённые подсказки по поводу решения.
  4. Почитать учебник или посмотреть видео на YouTube. Запросы, которые вы вводите в Яндекс и Google лучше проверять и на YouTube’е.


В наше время так много вещей подразумеваются под словом «задача» в данной дисциплине. Начинается всё с каких-нибудь задач на логику, которые решить можно методом исключения неправильного ответа, заканчивается печатанием и форматированием текстов и таблиц в MS Word или Excel. Попутно это сопровождается математической логикой, переводом чисел из одних систем исчисления в другие и т.д.

В любом случае задачу следует сначала поискать в решенном виде по интернету. Пускай это будет не конкретно ваш случай, но хотя бы похожую задачу найти нужно. Там уже по шаблону решите и своё. Если поиски успехом не увенчались, дробим на части то, что у нас есть, и разыскиваем информацию по частям.

Например, будет стоять перед вами задача: написать программу для возведения числа в степень на языке программирования, о котором минимум информации в интернете. В готовом виде вы такую программу не находите, что делать?

Вы узнаете, как, в принципе, такая программа пишется. Выясняется, что делается это с помощью циклов. Теперь вы ищите, какой синтаксис имеют циклы у изучаемого вами языка, применяете логику программы к вашему неизвестному языку, и вот результат.

В интернете на сегодняшний день мало информации, которую не найти. Нет лобового решения, воспользуйтесь разбиением. Разделите задачу на отдельные, непонятные вам вопросы и разберитесь с ними. После этого, суммируя изученный материал, смотрите на вопрос, как на единое целое. Такой подход в науке называется индукцией. Мы идём от чего-либо элементарного к более сложным понятиям.

Не зацикливайтесь на решении логических задач. Если вы будете по 5 часов сидеть и биться над решением одного задания, может ничего не получиться. Дайте себе расслабиться, отвлекитесь. Пока вы отвлекаетесь, мозг продолжает работать. Спустя какое-то время вернитесь к задаче, и вы удивитесь, насколько этот совет хорошо себя отрабатывает.

РЕШЕНИЕ ЗАДАЧ

При хранении и передаче информации с помощью технических устройств информацию следует рассматривать как последовательность символов - знаков (букв, цифр, кодов цветов точек изображения и т.д.).

Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2 i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:

Возможны следующие сочетания известных (Дано) и искомых (Найти) величин:

Тип Дано Найти Формула
1 i N N=2 i
2 N i
3 i,K I I=K*i
4 i,I K
5 I, K i
6 N, K I Обе формулы
7 N, I K
8 I, K N

Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.

Задача 1 . Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?

Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.

Задача 2 . Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.

Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.

Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:

1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.

Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=2 3 битам, а 1Мбайт=2 10 Кбайт=2 20 байт=2 23 бит. Отсюда, 2Мбайт=2 24 бит.
Ответ: 2 24 бит.

Задача 5. Сколько мегабайт информации содержит сообщение объемом 2 23 бит?
Решение: Поскольку 1байт=8битам=2 3 битам, то
2 23 бит=2 23 *2 23 *2 3 бит=2 10 2 10 байт=2 10 Кбайт=1Мбайт.
Ответ: 1Мбайт

Задача 6. Один символ алфавита "весит" 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:


Ответ: 16

Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:


Ответ: 256

Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:


Ответ: 5

Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:


Ответ: 5

Задача 10. У племени "чичевоков" в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:


Ответ: 5

Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:


Ответ: 351Кбайт или 0,4Мбайт

Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:


Ответ: 65536

Задача 13. Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:


Ответ: 4

Задача 14. Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:


Ответ: 120бит

Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:


Ответ: 131072

Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:


Ответ: 256

Задачи для самостоятельного решения:

  1. Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
  2. Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
  3. Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
  4. Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
  5. Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
  6. Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
  7. Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
  8. Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
  9. Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
  10. Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.

По степени трудности задачи делят на: простые, более сложные, повышенной сложности, творческие. Про стые задачи требуют для решения одну формулу и форму лирование одного двух выводов. С простых задач начина ют закрепление нового материала, поэтому их иногда на зывают тренировочными. Более сложные задачи требуют для решения использования нескольких формул, привле чения сведений из других разделов курса информатики, формулировки нескольких выводов.

Творческие задачи различаются большим разнооб разием, но среди них можно выделить исследовательские, которые требуют ответа на вопрос «почему?», и конструк торские, требующие ответа на вопрос «как сделать?».

По используемым для решения программным сред ствам можно выделить задачи, требующие применения: операционной системы, текстового редактора, графиче ского редактора, электронной таблицы, системы управле ния базами данных, других прикладных программ.

По используемым для решения аппаратным сред ствам можно выделить задачи, требующие применения различных средств вычислительной техники и внешних устройств, например, принтера, графопостроителя, скане ра, цифрового фотоаппарата, локальной сети и др.

Комбинированные задачи отличаются большим раз нообразием и предполагают: сочетание учебного мате риала различного содержания, часто из разных разделов курса, формулирования нескольких выводов, использова ния для решения нескольких формул и закономерностей.

12.3. Качественные задачи по информатике

Качественной называют такую задачу, в которой главной особенностью является акцент на качественную

сторону процесса или явления. Их ещё называют задачи вопросы. Решаются такие задачи путём логических умо заключений, с помощью графиков, рисунков или экспери ментально, обычно без применения математических вы числений.

Качественные задачи по информатике разнообразны по содержанию и используются учителем на большинстве уроков. Они служат средством проверки знаний и умений, способствуют их закреплению и углублению. Умело по ставленные задачи вопросы поддерживают активность учащихся на уроке, повышают интерес к информатике. Ис пользовать качественные задачи особенно необходимо при изучении тех разделов, где нет возможности решать количественные задачи, например, при изучении моде лей, истории информатики, текстового редактора и др. Ка чественные задачи позволяют учителю быстро провести проверку усвоения материала, выявить отсутствие его формального понимания.

Основной способ решения качественных задач – это аналитико синтетический, когда описываемое явление или процесс расчленяется на ряд простых, а затем путём син теза конструируется вывод следствий и получается ответ. С помощью дедукции и индукции строятся логическая це почка рассуждений, умозаключения.

Графический приём решения качественных задач часто подходит при решении задач на построение изобра жений с помощью средств графического редактора, по строения таблицы сложной формы с разновеликими боко виками и головками и др.

Экспериментальный приём решения заключается в получении ответа на основании проведённого опыта. Например:

Что произойдет с выравниванием содержимого ячейки электронной таблицы, если вы введёте в

неё: последовательность чисел и букв; последо вательность букв и чисел?

В какой из поисковых систем Google, Rambler или Яndex, на запрос по ключевым словам «Информа тика. Базовый курс» будет выдан наибольший список адресов документов?

В последней задаче ученикам придется потратить достаточно много времени на подключение к Интернету и проведение поиска в поисковых системах, а затем подсчё та числа выданных адресов.

Следует избегать сложных качественных задач, ре шение которых требует строить длинные цепи умозаклю чений, проследить за которыми по силу лишь немногим учащимся.

12.4. Количественные задачи по информатике

Количественные задачи обычно решаются по сле дующим темам:

количество и единицы измерения информации; сис темы счисления;

передача информации по линиям связи, кодирова ние информации;

хранение информации в памяти компьютера;

форматы машинных команд;

представление символьной, числовой, графической и звуковой информации.

Пример решения задачи на количество информации

Условие задачи : Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите

мощностью 32 символа, второй – мощностью 64 символа. Во сколько раз отличается количество информации в этих текстах?

Решение : В равновероятном приближении информаци онный объём текста равен произведению числа симво лов на информационный вес одного символа:

I = K x i

Поскольку оба текста имеют одинаковое количество символов (K ), то различие информационных объёмов определяется только разницей в информативности сим волов алфавита (i ). Найдемi 1 для первого алфавита иi 2 для второго алфавита:

2 i1 = 32; отсюдаi 1 = 5 битов; 2i2 = 64; отсюдаi 2 = 6 битов;

Следовательно, информационные объёмы первого и второго текстов:

I1 = Kx 5битов ; I2 = Kx 6битов

Отсюда следует, что количество информации во втором тексте больше, чем в первом в 6/5 раз или в 1,2 раза.

Ответ: во втором тексте информации больше в 1,2 раза.

Приведём пример записи условия и решения задачи, способ оформления которого близок к принятому для за дач по физике .

Условие задачи : Если сообщение несёт 4 бита информа ции, то во сколько раз была уменьшена неопределён ность?

Дано: Решение

N = 2 4 = 16 (вариантов).

3. В данном случае возможно 16 вариан тов. А произошло только одно событие.

16 / 1 = 16 (раз).

Ответ: Неопределённость в результате сообщения уменьшилась в 16 раз.

Такая форма записи условия и решения имеет пре имущество перед свободной записью, так как обладает определённым формализмом, знакома по урокам физики, дисциплинирует учащихся, выстраивает для них чёткий алгоритм решения.

В задачах на подсчёт количества информации можно выделить следующие основные этапы решения :

1) Осмысление условия задачи : определение, однозначно ли сформулирована задача, понимание всех слов и фраз, например «из 256 символьного алфавита», выявление су щественных элементов задачи, определение исходных данных и искомых результатов.

2) Запись краткого условия задачи : записать условное обозначение исходных данных и искомых величин.

3) Поиск пути решения задачи : выявление теоретических положений, связанных с задачей, соотнесение задачи с известным способом решения, разделение задачи на от дельные составляющие части.

4) Осуществление плана решения и получение искомого результата : записать решение словесным способом, по лучить конечную формулу в буквенном выражении и лишь затем подставить в формулу конкретные значения, полу

чить правильную единицу измерения искомой величины, записать развёрнутую формулировку ответа на вопрос за дачи после слова «Ответ».

5) Изучение и интерпретация найденного решения: уча щиеся демонстрируют осмысление полученного ответа; верифицируют результат; выполняют проверку путем со ставления и решения задачи, обратной данной, находят другой способ решения.

Как можно заметить, такой порядок во многом соот ветствует тому, что принят при решении задач по физике, поэтому он знаком учащимся и это обстоятельство следует использовать учителю. Приведём образец решения задачи на расчёт объёма памяти для хранения звуковой инфор мации :

Условие задачи : Определить размер (в байтах) цифрового аудиофайла, время звучания которого со ставляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение: Формула для расчёта размера (в бай тах) цифрового аудиофайла (монофоническое звуча ние):(частота дискретизации в Гц) х (время записи в секундах) х (разрешение в битах) / 8.

Таким образом, размер файла вычисляется так: 22050 х 10х 8 / 8 = 220500 байт.

Ответ: 220500 байт.

12.5. Задачи на моделирование явлений и про­ цессов

Задачи по этой теме занимают важное место в базо вом курсе, так как направлены на формирование умений и навыков владения информационно коммуникационными технологиями. Эти задачи обычно называют практически

ми заданиями из за их объёма и длительности решения. Часть задач на моделирование в среде текстового и графи ческого редактора относительно просты для исполнения. Задачи на моделирование в среде электронных таблиц и баз данных могут быть достаточно сложными и громозд кими, потребовать для решения несколько уроков.

Обычно в задачах моделируются физические, хими ческие и биологические явления и процессы, а также ма тематические и экономические расчёты, но есть и приме ры для моделирования литературных произведений. За дачи этого раздела представлены в учебнике Н.Д. Угрино вича по базовому курсу для 9 класса , в практикум задачнике под редакцией Н.В. Макаровой и задачни ке практикуме под редакцией И.Г. Семакина и Е.К. Хенне ра . Число имеющихся в них заданий с избытком пере крывает потребности базового курса, а учитель имеет воз можность выбора, исходя из своих предпочтений и вкуса.

В практикум задачнике по моделированию под ре дакцией профессора Н.В. Макаровой представлены такие важные и сложные темы курса как:

моделирование в среде графического редактора;

моделирование в среде текстового редактора;

моделирование в электронных таблицах;

информационные модели в базах данных.

В этом практикум задачнике по каждой теме курса дано большое число заданий и приведены подробные указания по их решению, включая выделение таких этапов как: постановка задачи, разработка модели, компьютер ный эксперимент, анализ результатов моделирования. Рассмотрим кратко пример задания по моделированию движения парашютиста. Выполнение задания разбивается на четыре этапа.

I этап. Постановка задачи. Описание задачи.

Парашютист при падении к земле испытывает действие силы тяжести и силы сопротивления воздуха. Экспериментально установлено, что сила сопротивле ния зависит от скорости движения: чем больше ско рость, тем больше сила. При движении в воздухе эта сила пропорциональна квадрату скорости с некоторым коэффициентом сопротивления k , который зависит от конструкции парашюта и веса человекаR сопр = k V 2 . Каково должно быть значение этого коэффициента, чтобы парашютист приземлился на землю со скоро стью не более 8 м/с, не представляющей опасности для здоровья?

Определите цели моделирования и проведите формализацию задачи.

II этап. Разработка модели.

На этом этапе сначала составляется информаци онная модель, а затем – математическая модель с записью уравнений движения парашютиста и выво дом формул для скорости парашютиста и пройденно го пути. После чего составляется компьютерная мо дель в среде электронной таблицы. Таблица содер жит три области: для исходных данных, для промежу точных расчётов, для результатов.

III этап. Компьютерный эксперимент.

Он включает план эксперимента и собственно проведение исследования.

IV этап. Анализ результатов моделирования.

Анализ состоит в формулировки ответов на по ставленные вопросы.

В учебнике Н.Д. Угриновича по базовому курсу моде лированию и формализации посвящена одна глава, а в

компьютерном практикуме моделированию процессов и явлений посвящены 3 практические работы из 23 х. Это проект «Движение Земли», биологическая модель разви тия популяций «Жертва хищник» и модель экспертной системы для лабораторной работы по химии «Распознава ние пластмасс». Причём для выполнения первой и третьей работы применяется система объектно ориентированного программирования Визуал Бейсик.

Моделирование развития биологической популяции проводится с использованием среды электронной табли цы. При этом вначале подробно описывается формальная модель процесса, вводятся коэффициенты роста числа жертв и хищников, коэффициент частоты их встреч. Затем записывается формулы для уменьшения числа жертв и увеличения числа хищников в ходе развития популяции. Потом строится компьютерная модель, которая визуали зируется путём построения графика изменения популяции на несколько лет вперёд.

В задачнике практикуме под редакцией И.Г. Семаки на и Е.К. Хеннера по данной теме в теоретическом введе нии подробно рассмотрено моделирование физических процессов на разнообразных примерах – движение с уче том сопротивления среды, свободное падение, взлёт раке ты, движение заряженных частиц, колебание маятника, теплопроводность в стержне. Моделирование биологиче ских процессов проводится на примере роста популяций, межвидовой конкуренции, системы жертва хищник. Инте рес представляет задание на моделирование случайных процессов – очереди в магазине.

Следует отметить, что подход к моделированию в этом задачнике основан на строгом и точном описании яв ления или процесса, использовании точных физических и