Структурно-функциональная классификация миелиновых и безмиелиновых нервных волокон. Процесс миелинизации и функция миелина

Каждый периферический нерв, состоит из большого числа нервных волокон, объединенных соединительнотканными оболочками (рис. 265- А). В нервном волокне, независимо от его природы и функционального назна­чения, различают осевой цилиндр - cylindroaxis, покрытый собственной оболочкой - axolemma и нервной оболочкой - neurolemma. При на­личии в последней жироподобного вещества - миелина нервное волокно называется мякотцым или миелиновым neurofibra myelinate, а при его" отсутствии - безмякотным или амиелиновым - neurofibra amyelinata (го­лые нервные волокна - neurofibria nuda).

Значение мякотной оболочки заключается в том, что она способствует лучшему проведению нервного возбуждения. В безмякотных нервных волок­нах возбуждение проводится со скоростью 0,5-2 м/с, в то время как в мя-котных волокнах - 60-120 м/с". По диаметру отдельные нервные волокна подразделяются на толстые мякотные (от 16-26 мкм у лошади, жвачных до 10-22" мкм у собаки)"--эфферентные соматические; средние мякотные (от 8-15 мкм у лошади, жвачных до 6-8 мкм у собаки) - афферентные соматические; тонкие (4--8 мкм)^ -у эфферентные вегетативные (рис. 265- Б).

Безмякотные нервные волокна входят в состав как соматических, так и висцеральных нервов, но в количественном отношений их больше в веге­тативных нервах. Они различаются как по диаметру, так и по форме ядер невролеммы: 1) маломякотные, или безмякотные, волокна с округлой формой ядер (диаметр волокна 4-2,5 мкм, размер ядра 8Х4",6 мкм, рас­стояние между ядрами 226-345 мкм); 2) маломякотные или безмякотные волокна с овалыювытянутой формой ядер невролеммы (диаметр волокна 1-2,5 мкм, размер ядра 12,8 X 4 мкм, расстояние между ядрами 85- 180 мкм); 3) безмякотные волокна с веретенообразной формой ядер невро* леммы (диаметр волокна 0,5-1,5 мкм, размер.ядра 12,8 х 1,2 мкм, рас-

А .56

Рис. 265. Строение периферического нерва? А - нерв на поперечном срезе: / - epineurium; 2 - perineurium; 3 - endoneurium! 4 - neurofibra myelinata; 5 - cylindraxis; 5 - состав нервны» волокон в сомати­ческом нерве овцы; 1, 2, 3 - neurofibra myelinata; 4 - neurofibra amyelinata; 5i 6, 7 - neurofibra nuda; a - temmocytus; e- incisio myelini; с - isthmus nodi.

стояние между волокнами 60-120 мкм). У животных разных видов эти по-, казатели могут быть неодинаковыми.

Оболочки нерва. Нервные волокна, отходящие от мозга, посредствомсоединительной ткани объединяются в пучки, составляющие основу пери-ферических нервов. В каждом нерве соединительнотканные элементы участ-вуют в образовании: а) внутри пучковой основы - endoneurium, распола-гающейся в виде рыхлой соединительной ткани между отдельными нервнымиволокнами; б) соединительнотканной оболочки, покрывающей отдельныегруппы нервных волокон, или периневрий - perineurium. В этой оболочкеснаружи различают двойной слой плоских эпителиальных клеток "эпенди-моглиальной природы, которые образуют вокруг нервного пучка перине-вральное влагалище, или периневральное пространство - spatium peri-neurii. От базилярного внутреннего слоя выстилки периневрального вла-галища в глубь нерврого пучка отходят соединительнотканные волокна,образующие внутри пучковые периневральные перегородки - septum peri-neurii; последние служат местом! прохождения кровеносных сосудов, а так-же участвуют в образовании эндоневриума. ^

Периневральные влагалища сопровождают пучки нервных волокон на всем их протяжении и делятся по мере деления нерва на более мелкие ветви. Полость периневрального влагалища сообщается о субарахноидальным и субдуральным пространствами спинного или головного мозга и. содер­жит небольшое количество ликвора (нейрогенный путь проникновения ви­руса бешенства в центральные отделы нервной системы).

Группы первичных нервных пучков посредством плотной неоформлен­ной соединительной ткани объединяются в более крупные вторичные и третичные пучки нервных стволов и составляют в них наружную соедини­тельнотканную оболочку, или эпиневрий - epineurium. В эпиневрий по срав­нению с эндоневрием проходят более крупные кровеносные и лимфатиче­ские сосуды - vasa nervorum. Вокруг нервных стволов имеется то или иное количество (в зависимости от места прохождения) рыхлой соединительной ткани, образующей по периферии нервного ствола дополнительную около-Нервную (защитную) оболочку - paraneural т. В непосредственной бли­зости к нервным пучкам она преобразуется в эпиневральную оболочку.

16-341 449

ЗАКОНОМЕРНОСТИ ХОДА И ВЕТВЛЕНИЯ НЕРВОВ

В топографии и ветвлении периферических нервов много общего с топо­ графией и ветвлением кровеносных сосудов, с которыми они чаще проходят вместе, образуя сосудисто-нервные пучки. Совместное их прохождение обу­словлено особенностями развития органов, для которых они предназначены, областью распределения и условиями функционирования. Располагаясь в одном, общем соединительнотканном футляре, кровеносные сосуды обеспе­чивают создание оптимального температурного режима для проводимости нервных импульсов, а также для питания нервных стволов. Кроме того, для периферических нервов характерны еще некоторые особенности.

]." Спинномозговые нервы от спинного мозга отходят метамерно в соответствии с делением костной основы и подразделяются на шейные, груд­ные, поясничные, крестцовые и хвостовые. Черепномозговые нервы отходят от продолговатого (с XII по V пару) и среднего мозга (IV и III пары). I и II Черепномозговые пары нервов занимают в этом отношении особое положение, являясь нервными трактами важнейших органов чувств.

2. Каждый спинномозговой нерв имеет два корня - дорсальный и вентральный - radix dorsalis et ventralis. На дорсальном корне находится спинномозговой ганглий - ganglion spinale. Оба корня у выхода из позвоноч­ного канала соединяются в общий нервный ствбл - спинномозговой нерв - п. spinalis," содержащий чувствительные, двигательные и симпатические волокна. Черепномозговые нервы отходят преимущественно одним корнем, соответствующим дорсальному или вентральному корешку спинномозгово­го нерва.

3: Все эфферентные (двигательные) нервные волокна выходят из вент­ральных столбов серого мозгового вещества спинного мозга и из"соответ­ствующих двигательных ядер продолговатого и среднего мозга (III, IV, VI, XI, XII). На спинном мозге они формируют вентральные двигательные корни.

    Все афферентные (чувствительные) нервные волокна состоят из ней­ритов клеток спинномозговых узлов и соответственно ганглиев черепно-мозговых нервов (V, VII, VIII, IX и X пар). Следовательно, все тела ре-цепторных (чувствительных) нейронов лежат вне спинного и головного мозга.

    Каждый спинномозговой нерв по выходе из позвоночного канала отдает белую соединительную ветвь - ramus (г) communicans albus - в симпатический ствол," ветвь в оболочки спинного мозга"-г. meningeus, получает затем серую соединительную ветвь - г. communicans griseus - от симпатического ствола и делится на дорсальную и вентральную ветви - г. dorsalis et ventralis - соответственно разграничению туловищной мус­кулатуры на дорсальный и вентральный мышечные тяжи с их сосудами. Каждая из упомянутых ветвей, в свою очередь, делится на медиальную и латеральную ветви - г. rnedialis et lateralis - для мускулатуры и кожи, что также обусловливается разделением мышечных тяжей на латеральный "и медиальный пласты. Совокупность ветвей каждого сегментного нерва

вместе с соответствующим участком спинного мозга образует нервный сег­мент - невротом - neurotom. Невротомы яснее выражены там, где су­ществует четкая сегментация в скелете и мышцах, например в грудном от­деле туловища.

6. При смещении в процессе эволюции миотомов вслед за ними сме-щаются иннервирующие их ветви соответствующих невротомов. Так, диа-фрагмальный нерв - п. phrenicus, происходящий, от 5-7-го шейных нев-ротомов, подходит к диафрагме через всю грудную полость; или, например,добавочный нерв - п. accessorius - выходит из позвоночного канала черезрваное отверстие в черепе, а направляется в шейный отдел для иннервацииплечеголовной, трапециевидной и грудиночелюстной мышц.

В области отхождения нервов в конечности образуются плечевое и

Рис 266. Зоны распределения кожных нервов: /-подглазничный н.; Г - подблоковый н.; 2 - лобный н.; 2 1

1 - скуловой н.; 3 - дорсальные ветви шейных н.; 4 - дорсальные ветви грудных н.; 5 - подвздошно-подчревный н.; 6 - подвздошнопаховой н.; 7 - краниальные кожные ягодичные н.; 8 - средние кожные ягодичные н.;- 9 - хвостовые н.; 10 - промежностный н.; 11 - каудальные кожные ягодичные н.; 12 - большеберцовый н.; 13 - плантарные кожные нервы стопы; 14 - малобёриовый поверхностный н.; 15 - кожный латераль­ный нерв голени; 16 - кожный латеральный нерв бедра; 17 - наружный срамной н.; 18 - н. сафенус; 19 - кожный медиальный н. стопы; 20 - вентральные ветви груд* ных н.; 21 - локтевой н.;, 22 - срединный н.; 23 - мышечно-кожный н.; 24 - луче­вой поверхностный н,; 25 - подмышечный н.; 26 - вентральный шейный н.; 27 -

нижнечелюстной н.

поясничнокрестцовое нервные сплетения - plexus brachialis et lumbo­sacral, а из них уже берут свое начало нервы, направляющиеся в опре­деленные мышечные группы. Обычно и нервы, и мышцы конечностей явля­ются многосегментными. Нервные сплетения встречаются и в области шеи, что также объясняется сложным, происхождением шейных мышц. Соедини­тельные ветви между отдельными нервами -rr. communicantes - указы­вают на происхождение отдельных нервов из нескольких невротомов.

7. Чувствительные нервы хотя в основном и соответствуют кожным сегментам - дерматомам, но иннервируют не только область своего сег­мента, а заходят и в смежные дерматомы. Поэтому обезболивание какого-либо кожного сегмента. (дерматома) возможно только при выключении трех смежных невротомов (рис. 266).

СПИННОМОЗГОВЫЕ НЕРВЫ

Спинномозговые нервы»- nervi spinales- разделяются на шейные (С), грудные (Th), поясничные (L), крестцовые (S) и хвостовые (Со) (соот­ветственно делению позвоночного столба).

ШЕЙНЫЕ НЕРВЫ

Шейные нервы - nn. cervicales - в количестве 8 пар выходят через межпозвоночные отверстия [первая пара (С I) выходит через межпозвоноч­ное отверстие атланта, вторая пара (С II) - через межпозвоночное отвер­стие позади атланта, а восьмая пара (С VIII) - позади 7-го шейного по­звонка]. Каждый шейнЫй нерв получает серую ветвь - г. griseus, в том числе С VIII-VII - от звёздчатого узла, С VI-III (II)-j-ot позвоночного нерва и С I (II) - от краниального шейного симпатического узла. Полу­чив серую ветвь и отдав оболочечную ветвь - г. meningeus, спинномозговой нерв делится на дорсальную и вентральную ветви - rr. dorsales et ventrales. Дорсальные медиальные ветви идут по медиальной поверхности подуости-стой" мышцы головы и шеи, а латеральные - по медиальной поверхности мышц шеи - пластыревидной и длиннейшей. Дорсальная медиальная ветвь первого шейного нерва носит название большого затылочного нерва - п. occipitalis major, который разветвляется в коротких мышцах затылочно-атлантного и осьатлантного суставов, а также в коже затылочной области и каудальных мышцах ушной.раковины.

Отдельные вентральные ветви шейных нервов характеризуются особым ходом и соответственно этому получают специальные, названия. Вентраль­ная ветвь первого" шейного нерва соединяется с подъязычным и вентральной ветвью второго шейного нерва, разветвляется в мышцах шеи. Вентральная ветвь второго шейного нерва имеет соединения с С I, С III, добавочным нер­вом. От нее берет начало большой ушной нерв - п. auricularis magnus, ко-"торый разветвляется в коже основания головы, мышцах* ушной раковины и здесь имеет соединения с ветвями п. facialis. Продолжением вентральной ветви С II служит поперечный нерв шеи - п. transversus colli; получив соединительную ветвь от С III, он разветвляется в коже щей, имея соеди­нения с кожными ветвями шеи - п. facialis.

Диафрагаальный нерв - п. phrenicus - происходит из С (V), VI и VII. Медиально" от лестничной мышцы и подключичной артерии он направляется в грудную полость и разветвляется в диафрагме.

Надключичный нерв - п. supraclavicular is - происходит из С VI, раз­ветвляется в коже области плечевого сустава, плеча и подгрудка. Вентраль­ные ветви 3 (4) последних: шейных нервов принимают участие в формиро­вании плечевого сплетения, из которого выходят нервы для плечевого пояса и свободного отдела грудной конечности.

ПЛЕЧЕВОЕ! СПЛЕТЕНИЕ

Плечевое сплетение - plexus brachialis - образуется двумя ствола­ми - trunci plexus - от вентральных ветвей С VI, VII и С VIII, Th I (II). Оно лежит вентрально от"лестничной мышцы и медиально от лопатки. Из Него выходят нервы, иннервирующие область плечевого пояса, мышцы лопатки и свободный Отдел конечности (рис. 267).

Дорсальный нерв лопатки-п. dorsalis scapulae (15) -двойной,-от­ходит от С V и VI. Оба нерва идут в ромбовидную мышцу - один по ме­диальной поверхности, а другой в толще шейной части вентральной зубча­той мышцы, в которую они посылают ветви. Имеет соединительные ветви с длинным грудным нервом.

Длинный грудной нерв - п. thoracicus longus - берет начало двумя ветвями от С VII-VIII, которые, объединившись, направляются каудаль­но и разветвляются в вентральной зубчатой Мышце.

Надлопаточный нерв - п. suprascapularis (1) - образуется из С VI и VIi,iHfleT вместе с надлопаточной артерией в предостную и заостную мыш» цы и в лопатку.

Подлопаточные нервы - nn. subscapulars (б) - в количестве 2-4

начинаются от С VI и направляются в одноименную мышцу, отдавая веточ-ки в большую круглую мышцу и надкостницу медиальной поверхностилопатки. . I ..

Грудоспйнной нерв - п. thoracodorsal (7) - берет начало вместе с подлопаточными или подмышечными нервами от С VI^-VII (у копытных С VII-VIII) и направляется в широчайшую мышцу спины, отдавая по сво­ему ходу ветви в большую круглую мышцу.

Подмышечный нерв - п. axillaris (4) - начинается от С VII-VIII,» вместе с плечевой окружной латеральной артерией проникает между под­лопаточной и большой круглой мышцами вглубь и, отдав мышечные ветви в малую круглую и дельтовидную мышцы (у собаки и лошади также и в капсулярную), выходит на латеральную поверхность плеча. Здесь от него отходит краниальный латеральный кожный нерв плеча - п. cutaneus brachii lateralis cranialis - и продолжается на предплечье, где получает название краниальный кожный нерв предплечья -- п. cutaneus antebrachii cranialis, здесь же он разветвляется, достигая запястья (В. И. Трошин).

Лучевой нерв - п. radialis (10) - самый крупный нерв разгибательной поверхности грудной конечности. Он начинается нервными пучками от С VII - С VIII и Th I, проходит между головками трехглавой мышцы пле­ча, где отдает им мышечные ветви. Огибая плечевую кость с каудальной поверхности в латеродистальйом направлении, лучевой нерв в области локтевого сустава отдает каудальный латеральный кожный нерв плеча -

h. cutaneus brachii lateralis caudalis - и делится на поверхностную и глу­бокую ветви. Глубокая ветвь - г. profundus - делится на мышечные ветви, которые разветвляются в разгибателях предплечья. Поверхностная ветвь - г. superficialis (рис. 268-10), отдав латеральный кожный нерв предплечья - п. cutaneus antebrachii lateralis, а у плотоядных и свийьи также латераль­ную и медиальную ветви, продолжается дистально и в области запястья де­лится на общие дорсальные пальцевые нервы - nn. digitales dorsales commu-

Рис. 268. Нервы кисти: А - собаки; Б - свиньи; В - коровы (с дорсальной поверхности); Г - лошади; Д - собаки; Е - свиньи; Ж - коровы (с пальмарной поверхности); 3 - п. muscu-locutaneus; 5 - п. medianus; 10 - г. superficialis п. radialis; 11 - п. ulnaris; 11" - г. dorsalis п. ulnaris; 13 - п. digitales palmares communes; 13" - r. communicans; 14- п. digitalis palmaris proprius (у лошади - lateralis); 15 - nn. digitales dorsales pro­prii; 16 - nn. digitales dorsales communes; /-V - пальцы.

hes (I-IV - у плотоядных, II-IV - у свиньи, II-III - у жвачных; у лошади их нет), которые продолжаются в собственно дорсальные пальце­вые нервы. У плотоядных наряду с общими дорсальными пальцевыми нер­вами от поверхностной ветви отходит первый неосевой дорсальный пальцевый нерв - п. digitalis dorsalis I abaxialis.

Мышечно-кожный нерв - п. musculocutaneus (3) - берет начало из С VI-VII и, отдав проксимальную ветвь - г. proximalis - в коракоидно-плечевую и двуглавую мышцы, вместе со срединным нервом у копытных образует подмышечную петлю - ansa axillaris.

У плотоядных мышечно-кожный нерв проходит по медиальной поверх-ности плеча вдоль двуглавой мышцы (у копытных он проходит вместе сосрединным нервом от подмышечной петли до дистальной трети предплечья,где вновь приобретает свою самостоятельность). Отдав дистальную мышеч-ную ветвь в плечевую мышцу и обменявшись соединительными ветвями сосрединным, нервом (у плотоядных), мышечно-кожный нерв продолжаетсякак медиальный кожный нерв предплечья - п. cutaneus? antebrachii me-dialis. "

Срединный нерв - п. medianus (5)- берет начало из С VII-VIII, Th I, проходит по медиальной поверхности плеча (у копытных совместно с мышечно-кожным нервом) и в области локтевого сустава отдает мышечные ветви в круглый пронатор и поверхностный пальцевый сгибатель (у плото­ядных), в сгибатели запястья и глубокий пальцевый сгибатель, в котором имеет внутримышечные соединения с ветвями локтевого нерва. Затем, от­дав межкостный нерв предплечья - п. interosseus antebrachii, спускается до дистального конца предплечья и делится на общие пальмарные пальце­вые нервы - nn. digitales palmares communes I-III (плотоядные), II-III (свинья, жвачные), а у лошади на медиальный и латеральный пальмарные нервы - nn. .palmares medialis et lateralis, которые соответствуют второму и третьему общим пальмарным пальцевым нервам (13). Общие пальмарные пальцевые нервы с костей пясти переходят в соответствующие собственно пальмарные пальцевые нервы - п. digitalis palmaris proprius I-IV (плото­ядные), II-IV (свинья, жвачные) и у лошади на латеральный и-медиальный пальмарные пальцевые нервы - nn. digitales palmares lateralis et medialis (14).

Локтевой нерв - n. ulnaris (11) - образуется за счет С VIII и Th I (у лошади и собаки и Th II), проходит по медиальной поверхности плеча по направлению к локтевому бугру, отдавая по своему ходу каудальный кожный нерв предплечья - п. cutaneus antebrachii caudalis, который до­стигает пальмарной поверхности запястья, и мышечные ветви в каудальные мышцы предплечья. Над запястьем локтевой нерв делится на дорсальную и пальмарную ветви.

Дорсальная ветвь. - г. dorsalis"-делится;на общий дорсальный паль­цевый нерв - п. digitalis dorsalis communis " IV (плотоядные, свинья, жвачные) и V неосевой дорсальный пальцевый нерв - п. digitalis dorsalis V abaxialis (плотоядные, свинья), которые продолжаются дистально и де-; лятся на собственные дорсальные пальцевые нервы - nn. digitales dorsales proprii IV-V (кошка, свинья, жвачные). У лошади дорсальная ветвь раз­ветвляется в коже дорсолатеральной поверхности запястья и пясти. ,

Пальмарная ветвь - г. palmaris, в свою очередь, делится на поверх­ностную и глубокую ветви.

Поверхностная ветвь - г. superficialis - делится на две ветви. Одна идет как общий дорсальный пальцевый нерв - п. digitalis palmaris commu­nis IV (плотоядные, свинья, жвачные), а у лошади III, или латеральный пальцевый нерв - п. palmaris lateralis, в образовании которого принимает участие и пальмарная латеральная ветвь срединного нерва. На середине пястной" кости латеральный пальмарный нерв у лошади принимает соеди­нительную ветвь от медиального пальмарного нерва. В области пястно-путового сустава общий пальмариый пальцевый нерв делится на собственно пальцевые Нервы, осевой к V (плотоядные, свинья," жвачные), неосевой к IV (плотоядные, свинья, жвачные) и латеральный пальцевый у лошади, от него отходит дорсальная ветвь (15) для латеродорсальной поверхности пальца. Вторая ветвь, отходящая от, г. superficialis, имеется у плотоядйых и свиньи и иннервирует у них пятый палец- : п. digitalis palmaris V abaxialis.

Глубокая ветвь - г. profundus, отходящая от пальмарной ветви локте­вого нерва, делится на пальмарные пястные" нервы - nn. metacarpei pal­mares (собака, лошадь), разветвляющиеся в межкостных и червеобразных мышцах, достигая дистального конца пясти. У других животных она корот­кая й ветвится в области запястья.

Грудные краниальные нервы - nn. pectorales craniales (2) - в коли­честве 3-4 ветвей образуются с медиальной поверхности плечевого спле­тения от С VI-VIII и направляются в поверхностные грудные мышцы, в которых и разветвляются.

Грудной каудальный нерв -т п. pectoralis caudalis (8) - берет начало с медиальной поверхности плечевого сплетения от С VIII-Th I (у собаки и лошади и от Th II) отдав мышечную ветвь в каудальную поверхностной грудной мышцы, продолжается как боковой грудной нерв, -п. thoracicus lateralis (8) -- для иннервации боковой стенки грудной клетки. У лошади от него отделяется вентральная ветвь, проходящая вдоль поверхностной грудной мышцы в каудальном направлении, теряясь в коже латеровентраль-ной поверхности грудной стенки.

Нервная система человека является самым главным органом, который делает нас нами во всех смыслах этого слова. Это совокупность различных тканей и клеток (нервная система состоит не только из нейронов, как многие думают, но также других особенных специализированных телец), которая отвечают за нашу чувствительность, эмоции, мысли, а также за работу каждой клетки нашего тела.

Её функции в целом - сбор информации о теле или окружающей среде при помощи огромного количества рецепторов, передача этой информации в специальные аналитические или командные центры, анализ полученной информации на сознательном или подсознательном уровне, а также выработка решений, передача этих решений внутренним органам или мышцам с контролем за их исполнением при помощи рецепторов.

Все функции условно можно поделить на командные или исполнительные. К командным относятся анализ информации, управление организмом, мышление. Вспомогательные функции, такие как контроль, сбор и передача информации, а также командных сигналов к внутренним органам, являются предназначением периферической нервной системы.

Хоть вся нервная система человека обычно понятийно разделяется на две части, центральная и периферическая нервные системы являются одним целым, так как одно невозможно без другого, а нарушение работы одной тут же влечёт патологические сбои в работе второй, в итоге как следствие – к нарушению работы организма или двигательной активности.

Как устроена ПНС и её функции

Периферическая нервная система состоит из всех , сплетений и нервных окончаний, которые находятся за пределами спинного, а также головного мозга, которые являются органами ЦНС.

Проще говоря, периферическая нервная система – это нервы, которые располагаются по периферии организма за пределами органов центральной нервной системы, которые занимают центральное место.

Структура ПНС представлена черепными и спинальными нервами, которые являются своеобразными главными проводящими нервными кабелями, собирающими информацию от более мелких, но очень многочисленных нервов, расположенных по всему телу человека, напрямую соединяя ЦНС с органами тела, а также нервов вегетативной и соматической нервной системы.

Деление ПНС на вегетативную и соматическую также немного условно, оно происходит в соответствии с выполняемыми нервами функциями:

Соматическая система состоит из нервных волокон или окончаний, задача которых сбор, доставка чувственной информации от рецепторов или органов чувств к ЦНС, а также осуществление моторной активности, согласно сигналам центральной нервной системы. Она представлена двумя типами нейронов: сенсорными или афферентными и моторными – эфферентными. Афферентные нейроны отвечают за чувствительность и доставляют информацию для ЦНС об окружающей человека обстановке, а также о состоянии его тела. Эфферентные, напротив, доставляют информацию от ЦНС к мышечным волокнам.

Вегетативная нервная система занимается регуляцией деятельности внутренних органов, осуществляя контроль за ними при помощи рецепторов, передавая возбуждающие либо тормозящие сигналы от ЦНС к органу, заставляя его работать, либо отдыхать. Именно вегетативная система в тесном сотрудничестве с ЦНС обеспечивает гомеостаз, регулируя внутреннюю секрецию, сосуды, а также многие процессы в организме.

Устройство вегетативного отдела также довольно сложно и представлено тремя нервными подсистемами:

  • Симпатическая нервная система – совокупность нервов, отвечающая за возбуждение органов и как следствие – усиление их активности.
  • Парасимпатическая – наоборот, представлена нейронами, чья функция заключается в угнетении или успокоении органов либо желёз для снижения их производительности.
  • Метасимпатическая состоит из нейронов, способных стимулировать сократительную деятельность, которые находятся в таких органах, как сердце, лёгкие, мочевой пузырь, кишечник и другие полые органы, способные к сокращению для выполнения своих функций.

Строение симпатической и парасимпатической систем довольно схоже. Они обе подчиняются особым ядрам (симпатическим и парасимпатическим, соответственно), расположенном в спинном или головном мозге, которые, анализируя полученную информацию, активируются и регулируют деятельность внутренних органов, отвечающих по большей части за переработку или секрецию.

Метасимпатическая же таких ядер не имеет и функционирует как отдельные комплексы микроганглионарных образований, нервов, которые их соединяют и отдельных нервных клеток с их отростками, которые полностью находятся в контролируемом органе, потому она действует несколько автономно от ЦНС. Её пункты управления представлены особыми интрамуральными ганглиями – нервными узлами, которые отвечают за ритмичные сокращения мышц и могут регулироваться при помощи гормонов, вырабатываемых эндокринными железами.

Все нервы симпатической или парасимпатической вегетативной подсистемы совместно с соматическими соединяются в большие главные нервные волокна, которые ведут к спинному мозгу, а через него к головному, либо напрямую к органам головного мозга.

Заболевания, которым подвержена периферическая нервная система человека:

Периферические нервы, как все органы человека подвержены определённым заболеваниям или патологиям. Заболевания ПНС делятся на невралгии и невриты, являющиеся комплексами всевозможных недугов, различающиеся между собой по тяжести повреждения нерва:

  • Невралгии – заболевания нерва, вызывающие его воспаление без разрушения его структуры или гибели клеток.
  • Невриты – воспаления или травмы с разрушением структуры нервной ткани различной тяжести.

Неврит может возникнуть сразу по причине негативного воздействия на нерв любого происхождения или развиться из запущенной невралгии, когда из-за отсутствия лечения воспалительный процесс стал причиной начавшейся гибели нейронов.

Также все недуги, какие могут коснуться периферических нервов, делятся по топографически-анатомическому признаку, а проще говоря — по месту возникновения:

  • Мононеврит – заболевание одного нерва.
  • Полиневрит – заболевание нескольких.
  • Мультиневрит – заболевание множества нервов.
  • Плексит – воспаление сплетений нервов.
  • Фуникулит – воспаление нервных канатиков – проводящих нервные импульсы каналов спинного мозга, по которым движется информация от периферических нервов к ЦНС и обратно.
  • Радикулит – воспаление корешков периферических нервов, при помощи которых они крепятся к спинному мозгу.


Ещё их различают по этиологии - причине, которая вызвала невралгию или неврит:

  • Инфекционного характера (вирусного или бактериального).
  • Аллергического.
  • Инфекционно-аллергического.
  • Токсического
  • Травматического.
  • Компрессионно-ишемического – заболевания по причине сдавливания нерва (различные защемления).
  • Дисметаболического характера, когда они вызваны нарушением обмена веществ (недостаток витамина. Выработки какого-то вещества и т.д.)
  • Дисциркуляторного – по причине нарушения кровообращения.
  • Идеопатического характера – т.е. наследственного.

Нарушения работы периферической нервной системы

При поражении органов ЦНС люди ощущают изменение умственной активности или нарушение работы внутренних органов, так как контролирующие либо управляющие центры посылают неправильные сигналы.

Когда происходит поломка периферических нервов, сознание человека обычно не страдает. Можно отметить только возможные неверные ощущения от органов чувств, когда человеку кажется другим вкус, запах или мерещатся тактильные прикосновения, мурашки и т.п., по причине сбоев в работе рецептов, либо нейронного волокна, по которому они передаются в ЦНС, искажаясь уже по пути. Также проблемы могут возникнуть при проблемах с вестибулярным нервом, при двустороннем поражении которого человек может потерять ориентацию в пространстве.

Обычно, поражения периферических нейронов приводят, прежде всего, к болевым ощущениям или потере чувствительности (тактильной, вкусовой, зрительной и т.д.). Затем происходит прекращение работы органов, за которые они отвечали (паралич мышц, остановка сердца, невозможность глотать и т.п.) или нарушение работы из-за неправильных сигналов, которые были искажены во время прохождения по повреждённой ткани (парезы, когда теряется мышечный тонус, потливость, повышенное слюноотделение).

Серьёзные повреждения периферической нервной системы могут привести к инвалидности или даже смерти. Но может ли ПНС восстанавливаться?

Всем известно, что центральная нервная система не способна регенерировать свои ткани путём деления клеток, так как нейроны у людей перестают делиться по достижении определённого возраста. То же самое относится к периферической нервной системе: её нейроны также не способны размножаться, но могут в маленькой степени восполняться за счёт стволовых клеток.

Однако, люди, перенёсшие операцию, и временно терявшие чувствительность кожи области разреза, замечали, что через какое-то длительное время она восстанавливалась. Многие думают, что это проросли новые нервы вместо разрезанных старых, но на самом деле это не так. Отрастают не новые нервы, а старые нервные клетки образуют новые отростки, а затем прокидывают их в неконтролируемую область. Эти отростки могут быть с рецепторами на концах или переплестись, образовав новые нервные связи, а, следовательно – новые нервы.

Восстановление нервов периферической системы происходит точно также, как восстановление ЦНС путём образования новых нервных связей и перераспределения обязанностей между нейронами. Такое восстановление восполняет утраченные функции зачастую лишь частично, а также не обходится без казусов. При сильном поражении каких-либо нервов, один нейрон может относиться не к одной мышце, как должно быть, а к нескольким при помощи новых отростков. Иногда эти отростки проникают довольно не логично, когда при произвольном сокращении одной мышцы происходит непроизвольное сокращение другой. Такое явление довольно часто происходит при запущенном неврите троичного нерва, когда во время еды человек начинает непроизвольно плакать (синдром крокодильих слёз) либо нарушается его мимика.

Как вариант восстановления периферических волокон возможен метод нейрохирургического вмешательства, когда они просто сшиваются. В дополнение разрабатывается новейший метод с использованием чужих стволовых клеток.

Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна

Безмиелиновые нервные волокна находятся преимущественно в составе автономной, или вегетативной, нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа . По мере погружения осевых цилиндров в тяж нейролеммоцитов оболочки последних прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры.Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр.

Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе.

Встречаются в ЦНС и ПС.

● Скорость проведения нервного импульса выше, чем в безмиел новых нервных волокнах.

● Волокна толще.

● В составе оболочки имеется миелиновый слой (спирально закрученный длинный мезаксон).

● Встречаются насечки миелина

(насечки Шмидта –Лантермана).

● Имеются узловые перехв

Процесс миелинизации и функция миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Строение периферического нерва.

Вoлoкнa пeрифeричeскиx нeрвoв группируются в пучки.

В ниx имeются кaк чувствитeльныe (aффeрeнтныe), тaк и двигaтeльныe (эффeрeнтныe) вoлoкнa.

Бoльшaя чaсть oкoнчaния пeрифeричeскoгo нeрвa сoстoит из трex зaщитныx oбoлoчeк сoeдинитeльнoй ткaни, бeз кoтoрыx xрупкиe нeрвныe вoлoкнa будут пoдвeржeны пoврeждeниям.

Эндoнeврий - этo слoй тoнкoй сoeдинитeльнoй ткaни, oкружaющий мeльчaйшую eдиницу пeрифeричeскoгo нeрвa, aксoн.

Этoт слoй мoжeт тaкжe oкружaть миeлинoвую oбoлoчку aксoнa.

Пeринeврий - этo слoй сoeдинитeльнoй ткaни, oкружaющий группу зaщищeнныx нeрвныx вoлoкoн, нaзывaeмыx пучкaми, пoскoльку вoлoкнa связaны в пучки.

Эпинeврий.

Пучки нeрвoв oбъeдинeны вмeстe слoeм плoтнoй сoeдинитeльнoй ткaни, эпинeвриeм, в пeрифeричeский нeрв. Эпинeврий тaкжe oкружaeт крoвeнoсныe сoсуды.

Дегенерация и регенерация нервных волокон при повреждении.

Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют.

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

Периферический скелет состоит из скелета поясов и свободных конечностей. Пояса плечевой и тазовой служат для связи конечностей с туловищем. Тазовые конечности основные толкатели туловища впереди при движении.

Скелет плечевого пояса – состоит из 3-х костей: лопатка, ключица, и коракоидной кости.

Лопатка – плоская, длина, узкая, саблевидно искривлённая. Три суставные поверхности сочленяют лопатку с плечевой, коракоидной костями и ключицей.

Ключица – парная кость. Дистальные концы обеих ключиц срастаются, образуя вилку, или дужку. Вилочка является пружинистым устройством. Проксимальный конец ключицы слегка утолщен, сочленяется с лопаткой, ключицей, коракоидной костью.

Коракоидная кость – длинная, трубчатая кость плечевого пояса, соединяется суставами с лопаткой, ключицей и плечевой костью.

Скелет свободной грудной кости (крыла) – состоит из 3-х звеньев и костей, что и грудная конечность млекопитающих: плеча, предплечья, кости, но строение имеет особенности в связи с функцией крыльев.

Плечевая кость образует скелет плеча. Длинная трубчатая кость с суженым диафизом и расширенным эпифизом. На проксимальном конце плечевой кости – суставная голова для сочленения с лопаткой и коракоидной костью, на медиальной поверхности – пневматическое отверстие, ведущее в воздухоносную полость внутри плечевой кости. Через это отверстие полости плечевых костей соединяются с межключичным воздухоносным мешком. Дистальный конец плечевой кости имеет уставные поверхности для сочленения с лучевой и локтевой костями.

Кости предплечья образованы локтевой и лучевой костями. Более развита локтевая, которая является главной опорой маховых перьев.

Кости запястья сильно редуцированы, т.к. не несет амортизационной функции, а является местом поддержания сухожилий мышц-разгибателей.

Запястно-пястные кости соединены суставами с костями 2-го, 3-го и 4-го пальцев; второй палец является основой крылышка и состоит из 1-ой кости, прикреплен под запястным суставом в проксимальной части пястно-запястной кости; в 3-ем пальце имеется 2-е кости, в 4-ом одна кость.

Скелет тазового пояса – состоит из лонной, подвздошной и седалищной костей, сросшихся в одну безымянную кость. Подвздошная и седалищная кости сращены с костями пояснично-крестцового отдела.

Кости свободных тазовых конечностей – бедренная кость с одним вертелом. Кости голени представлены хорошо развитой большеберцово-заплюсневой костью и рудиментом малоберцовой кости. Дистальный конец большеберцовой кости сращен с проксимальным рядом костей заплюсневого сустава.

Заплюсневый сустав – без пяточной кости и образован суставными концами большеберцово-заплюсневой кости и заплюсно-плюсневой.

Костей плюсны 2: заплюсно-плюсневая основная кость образована слившимися 2-ой, 3-ей и 4-ой плюсневыми костями заплюсневого сустава (так называемая цевка). На дистальном конце заплюсно-плюсневой кости находятся 3-и суставные поверхности (на концах, слившихся 3-х костей) для сочленнения с фалангами пальцев;

Первая плюсневая кость небольшого размера, сочленяется с первым пальцем. Проксимальнее этой кости у петухов иногда у кур есть шпорный отросток.

Скелет пальцев – у домашних птиц на тазовой конечности четыре пальца: 1-ый задний и 2-ой – 4-ый передние. В каждом пальце количество костей (фаланг) равно номеру пальца+1: в первом пальце 2-е фаланги, во 2-ом три, в 3-ем четыре, в 4-ом пять

Строение и видовые особенности выйной связки.

Связки- пучки плотной соединительной ткани, располагаются в толще фиброзного слоя, капсулы, соединяют одну кость с другой. Они укрепляют суставную сумку и направляют движение в суставе.

Выйная или затылочная связка – самая крепкая и весьма упругая связка, прикрепляется передним концом к затылочной кости, а задним к остистому отростку последнего шейного позвонка, поддерживает голову. Выйная связка состоит из 2-х частей: канатика и пластинки.

Канатик выйной связки парный начинается от шероховатой поверхности затылочной кости и прикрепляется к остистым отросткам 2-3-го грудных позвонков (у лошади – 5, жвачных – 3, собаки – 1-го), образуя остов верхнего края шеи.

Пластинка выйной связки – парная, берет начало широкими зубцами от остистых отростков всех шейных (кроме первого) позвонков, а у лошади – и первого грудного. От первых пяти позвонков пластинчатая часть заканчивается на канатике выйной

связки, а от последних двух-трех – на остистых отростках 1-го (жвачные) или 2 – 3-го (лошадь)

грудных позвонков. У собаки пластинчатая часть отсутствует. Каудальная связка проходит по вершинам остистых отростков и называется надостистой связкой. Пластинка выйной связки парная заполняет промежуток между столбиковой частью и шейными позвонками. Она начинается отдельными зубцами на остистых отростках шейных и 1-го грудного позвонка и прикрепляется к столбиковой части этой связки. У свиней и у кошек выйная связка не развита. У собак имеется лишь слаборазвитая канатиковая часть.

Строение простого сустава.

Сустав – это подвижное соединение костей, иначе называемое сочление. Образуются суставы на хрящевой стадии развития скелета зародыша. В этот период соединительнотканный скелет остается в виде тонкого слоя, покрывающего хрящи, и называется надхрящницей. По мере дальнейшего развития хрящевой скелет разделяется на участки – будущие кости. Между ними возникают пространства- суставные полости, ограниченные надхрящницей, затем превращаются в надкостницу. В каждом суставе есть: капсула, синовия – жидкость, заполняющая суставную полость суставные хрящи, не имеющие надхрящницы.

По строению суставы могут быть простыми, сложными и комбинированными.

Простой сустав – образуется двумя сочленяющимися костями и каких-либо

внутрисуставных включений не имеет.

Строение сложного сустава.

Сложный сустав состоит из двух или более простых суставов между отдельными костями (например, суставы запястный, заплюсневый и коленный).

Строение сложного сустава.

Тип комбинированного сустава представляет сочетание различных по характеру движений участков одной и той же суставной поверхности, из которых один позволяет движение одного вида, другой-другого. Он у копытных не встречается. По этому типу построен у стопо- и пальцеходящих локтевой сустав и сустав 1-й фаланги пальцев.

Мышцы плечевого пояса

Трапециевидная мышца располагается поверхностно на дорсальной части шеи и холки, делится на шейную и грудную части.

Ромбовидная мышца –лежит под трапециевидной мышцей.

Плечеатлантная (атлантоакромиальная) мышца -тонкая лентовидная мышца. Располагается на боковой поверхности шеи над плечеголовной мышцей. Начинается от крыла атланта, заканчивается на акромионе лопатки.

Плечеголовная мышца -длинная лентовидная мышца. Располагается поверхностно на боковой части шеи. Начинается от затылочной и височной кости, от угла нижней челюсти, от выйной связки. Заканчивается на гребне большого бугра плечевой кости под дельтовидной шероховатостью.

Широчайшая мышца спины - располагается поверхностно на грудной стенке.

Оттягивает конечность назад.

Зубчатая вентральная мышца Особенности и функция: основной держатель туловища между конечностями.

Поверхностная грудная мышца Особенности и функция: Подтягивает конечность вперед, разгибает плечевой сустав.

Глубокая грудная мышца Тянет конечность назад, подтягивает туловище вперед.