Синтез жирных кислот. Биосинтез жирных кислот, триацилглицеролов и фосфолипидов

Синтез жиров осуществляется главным образом из углеводов, поступивших в избыточном количестве и не используемых для пополнения запаса гликогена. Кроме того, в синтезе участвуют и некоторые аминокислоты. Накоплению жиров способствует и избыток пищи.

Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который в основном поступает из митохондрий. Ацетил Ко-А самостоятельно не может диффундировать в цитозоль клетки, так как митохондриальная мембрана непроницаема для него. Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

В цитозоле цитрат реагирует с НS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитрат-лиазой. Уже в цитозоле оксалоацетат при участии цитозольной малатдегидрогеназы восстанавливается до малата. Последний при помощи дикарбоксилаттранспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата.

Имеются два типа синтазных комплексов, катализирующих биосинтез жирных кислот, оба находятся в растворимой части клетки. У бактерий, растений и низших форм животных, таких как эвглена, все индивидуальные ферменты синтазной системы находятся в виде автономных полипептидов; ацильные радикалы связаны с одним из них, получившим название «ацилпереносящий белок» (АПБ). У дрожжей, млекопитающих и птиц синтазная система представляет собой полиферментный комплекс, который нельзя разделить на компоненты, не нарушив его активности, а АПБ является частью этого комплекса. Как АПБ бактерий, так и АПБ полиферментного комплекса содержит пантотеновую кислоту в виде 4 / -фосфопантетеина. В синтетазной системе АПБ выполняет роль КоА. Синтазный комплекс, катализирующий образование жирных кислот, является димером. У животных мономеры идентичны и образованы одной полипептидной цепью, включающей 6 ферментов, катализирующих биосинтез жирных кислот, и АПБ с реакционноспособной SH-группой, принадлежащей 4 / -фосфопантетеину. В непосредственной близости от этой группы расположена другая сульфгидрильная группа, принадлежащая остатку цистеина, входящего в состав 3-кетоацил-ситазы (конденсирующего фермента), которая входит в состав другого мономера. Поскольку для проявления ситазной активности необходимо участие обеих сульфгидрильных групп, синтазный комплекс активен только в виде димера.

Первой реакций биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется бикарбонат, АТФ, ионы марганца. Катализирует реакцию ацетил-КоА-карбоксилаза. Фермент относится к классу лигаз и содержит в качестве простетической группы биотин.

Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II-перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Малонил-КоА переходит в комплекс с SH-АПБ при участии фермента малонил-трансацилазы. В следующей реакции происходит взаимодействие ацетил-S-АПБ и малонил-S-АПБ. Происходит выделение карбоксильной группы малонил-S-АПБ в виде СО 2 . Ацетоацетил-S-АПБ при участии НАДФ + -зависимой редуктазы восстанавливается с образованием b-гидроксибутирил-S-АПБ. Далее реакция гидратации b-гидроксибутирил-S-АПБ приводит к образованию кротонил-b-гидроксибутирил-S-АПБ, который восстанавливается НАДФ + -зависимой редуктазой с образованием бутирил-S-АПБ. Далее рассмотренный цикл реакций повторяется: полученный бутирил-S-АПБ реагирует с другой молекулой малонил-S-АПБ с выделением молекулы СО 2 (рис. 42).

Рис. 42. Биосинтез жирных кислот

В случае синтеза пальмитиновой кислоты (С 16) необходимо повторение шести реакций, началом каждого из циклов будет присоединение молекулы малонил-S-АПБ к карбоксильному концу синтезируемой цепи жирной кислоты. Таким образом, присоединяя одну молекулу малонил-S-АПБ, углеродная цепь синтезируемой пальмитиновой кислоты увеличивается на два углеродных атома.

Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который образуется двумя путями: либо в результате окислительного декарбоксилирования пирувата. (см. рис. 11, Этап III), либо в результате b-окисления жирных кислот (см. рис. 8).

Рисунок 11 – Схема превращения углеводов в липиды

Напомним, что превращения образовавшегося при гликолизе пирувата в ацетил-КоА и его образование при b-окислении жирных кислот происходит в митохондриях. Синтез жирных кислот протекает в цитоплазме. Внутренняя мембрана митохондрий непроницаема для ацетил-КоА. Его поступление в цитоплазму осуществляется по типу облегченной диффузии в виде цитрата или ацетилкарнитина, которые в цитоплазме превращаются в ацетил-КоА, оксалоацетат или карнитин. Однако главный путь переноса ацетил-коА из митохондрии в цитозоль является цитратный (см. рис. 12).

Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

В цитозоле цитрат реагирует с HS-КоА и АТФ, вновь распадается на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитратлиазой. Уже в цитозоле оксалоацетат при участии цитозольной дикарбоксилат-транспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата, завершая тем самым так называемый челночный цикл:

Рисунок 12 – Схема переноса ацетил-КоА из митохондрий в цитозоль

Биосинтез насыщенных жирных кислот происходит в направлении, противоположном их b-окислению, наращивание углеводородных цепей жирных кислот осуществляется за счет последовательного присоединения к их концам двухуглеродного фрагмента (С 2) – ацетил-КоА (см. рис. 11, этап IV.).

Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется СО 2 , АТФ, ионы Mn. Катализирует эту реакцию фермент ацетил-КоА – карбоксилаза. Фермент содержит в качестве простетической группы биотин (витамин Н). Реакция протекает в два этапа: 1 – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты.

Нужно отметить, что скорость биосинтеза жирных кислот определяется содержанием сахаров в клетке. Увеличение концентрации глюкозы в жировой ткани человека, животных и повышение скорости гликолиза стимулирует процесс синтеза жирных кислот. Это свидетельствует о том, что жировой и углеводный обмен тесно взаимосвязаны друг с другом. Важную роль здесь играет именно реакция карбоксилирования ацетил-КоА с его превращением в малонил-КоА, катализируемая ацетил-КоА-карбоксилазой. Активность последней зависит от двух факторов: наличия в цитоплазме высокомолекулярных жирных кислот и цитрата.


Накопление жирных кислот оказывает тормозящее влияние на их биосинтез, т.е. подавляют активность карбоксилазы.

Особая роль отводится цитрату, который является активатором ацетил-КоА-карбоксилазы. Цитрат в то же время играет роль связующего звена углеводного и жирового обменов. В цитоплазме цитрат вызывает двойной эффект в стимулировании синтеза жирных кислот: во-первых, как активатор ацетил-КоА-карбоксилазы и, во-вторых, как источник ацетильных групп.

Очень важной особенностью синтеза жирных кислот является то, что все промежуточные продукты синтеза ковалентно связаны с ацилпереносящим белком (HS-АПБ).

HS-АПБ – низкомолекулярный белок, который термостабилен, содержит активную HS-группу и в простетической группе которого содержится пантотеновая кислота (витамин В 3). Функция HS-АПБ аналогична функции фермента А (HS-КоА) при b-окислении жирных кислот.

В процессе построения цепи жирных кислот промежуточные продукты образуют эфирные связи с АБП (см. рис. 14):

Цикл удлинения цепи жирных кислот включает четыре реакции: 1) конденсации ацетил-АПБ (С 2) с малонил-АПБ (С 3); 2) восстановления; 3) дегидротации и 4) второго восстановления жирных кислот. На рис. 13 представлена схема синтеза жирных кислот. Один цикл удлинения цепи жирной кислоты включает четыре последовательных реакции.

Рисунок 13 – Схема синтеза жирных кислот

В первой реакции (1) – реакции конденсации – ацетильная и малонильные группы взаимодействуют между собой с образованием ацетоацетил-АБП с одновременным выделением СО 2 (С 1). Эту реакцию катализирует конденсирующий фермент b-кетоацил-АБП-синтетаза. Отщепленный от малонил-АПБ СО 2 – это тот же самый СО 2 , который принимал участие в реакции карбоксилирования ацетил-АПБ. Таким образом, в результате реакции конденсации происходит образование из двух-(С 2) и трехуглеродных (С 3) компонентов четырехуглеродного соединения (С 4).

Во второй реакции (2) – реакции восстановления, катализируемой b-кетоацил-АПБ-редуктазой, ацетоацетил-АПБ превращается в b-гидроксибутирил-АПБ. Восстанавливающим агентом служит НАДФН + Н + .

В третьей реакции (3) цикла-дегидратации – от b-гидроксибутирил-АПБ отщепляется молекула воды с образованием кротонил-АПБ. Реакция катлизируется b-гидроксиацил-АПБ-дегидратазой.

Четвертой (конечный) реакцией (4) цикла является восстановление кротонила-АПБ в бутирил-АПБ. Реакция идет под действием еноил-АПБ-редуктазы. Роль восстановителя здесь выполняет вторая молекула НАДФН + Н + .

Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (С 16). В этом случае образование бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы молонил-АПБ (С 3) – реакция (5) к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется карбоксильная группа в виде СО 2 (С 1). Этот процесс можно представить в следующем виде:

С 3 + С 2 ® С 4 + С 1 – 1цикл

С 4 + С 3 ® С 6 + С 1 – 2 цикл

С 6 + С 3 ® С 8 + С 1 –3 цикл

С 8 + С 3 ® С 10 + С 1 – 4 цикл

С 10 + С 3 ® С 12 + С 1 – 5 цикл

С 12 + С 3 ® С 14 + С 1 – 6 цикл

С 14 + С 3 ® С 16 + С 1 – 7 цикл

Могут синтезироваться не только высшие насыщенные жирные кислоты, но и ненасыщенные. Мононенасыщенные жирные кислоты образуются из насыщенных в результате окисления (десатурации), катализуруемой ацил-КоА-оксигеназой. В отличие от растительных тканей ткани животных обладают весьма ограниченной способностью превращать насыщенные жирные кислоты в ненасыщенные. Установлено, что две наиболее распространенные мононенасыщенные жирные кислоты – пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот. В организме млекопитающих, в том числе и человека, не могут образовываться, например, из стеариновой кислоты (С 18:0) линолевая (С 18:2) и линоленовая (С 18:3) кислоты. Эти кислоты относятся к категории незаменимых жирных кислот. К незаменимым жирным кислотам относят также арахиновую кислоту (С 20:4).

Наряду с десатурацией жирных кислот (образование двойных связей) происходит и их удлинение (элонгации). Причем, оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН+Н + .

На рисунке 14 представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.

Рисунок 14 – Схема превращения насыщенных жирных кислот

в ненасыщенные

Завершается синтез любой жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:

Образовавшийся ацил-КоА является активной формой жирной кислоты.

Синтез жирных кислот протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот. Установлено, что в цитоплазме печеночных клеток синтезируется пальмитиновая кислота (16 углеродных атомов), а в митохондриях этих клеток из уже синтезированной в цитоплазме клетки пальмитиновой кислоты или из жирных кислот экзогенного происхождения, т.е. поступающих из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атома.

Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуются бикарбонат, АТФ, ионы марганца. Катализирует эту реакцию фермент ацетил-КоА-кар-боксилаза. Фермент содержит в качестве простетической группы биотин. Авидин – ингибитор биотина угнетает эту реакцию, как и синтез жирных кислот в целом.

Установлено, что ацетил-КоА-карбоксилаза состоит из переменного числа одинаковых субъединиц, каждая из которых содержит биотин, биотинкарбоксилазу, карбоксибиотинпереносящий белок, транскарбоксилазу, а также регуляторный ал-лостерический центр, т.е. представляет собой полиферментный комплекс.

Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Мультиферментный комплекс, называемый синтетазой (синтазой) жирных кислот, состоит из 6 ферментов, связанных с так называемым ацилпереносящим белком (АПБ). Данный белок в синтетазной системе выполняет роль КоА.Приводим последовательность реакций, происходящих при синтезе жирных кислот:

образованием бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы малонил-АПБ к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется дистальная карбоксильная группа малонил-АПБ в виде СО2. Например, образовавшийся в первом цикле бутирил-АПБ взаимодействует с малонил-АПБ:

Завершается синтез жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:

Суммарное уравнение синтеза пальмитиновой кислоты можно записать так:

Образование ненасыщенных жирных кислот. Элонгация жирных кислот.

пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот.

Наряду с десатурацией жирных кислот (образование двойных связей) в микросомах происходит и их удлинение (элонгация), причем оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН. Энзиматическая система, катализирующая удлинение жирных кислот, получила название элонгазы. На схеме представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.



Регуляция синтеза ЖК:

ассоциация/диссоциация комплексов субъединиц фермента Ац-КоА-карбоксилазы. Активатор – цитрат; ингибитор – пальмитоил-КоА.

фосфорилирование/де=//=. Фосфорилированный ф. неактивен(глюкагон и адреналин). Инсулин вызывает дефосфорилирование – становится активной.

индукция синтеза ферментов. Избыт.потребление у/в – ускорение превращения продуктов катаболизма в жиры; голодание или богатая жирами пища приводит к снижении синтеза ферментов и жиров.

Синтез пальмитиновой кислоты (С16) из Ацетил-КоА.

1) Протекает в цитоплазме клеток печени и жировой ткани.

2) Значение: для синтеза жиров и фосфолипидов.

3) Протекает после приема пищи (в абсорбтивный период).

4) Образуется из ацетил-КоА, полученного из глюкозы (гликолиз → ОДПВК → Ацетил-КоА).

5) В процессе последовательно повторяются 4 реакции:

конденсация → восстановление → дегидратация → восстановление.

В конце каждого цикла ЖК удлиняется на 2 углеродных атома .

Донор 2С – малонил-КоА.

6) В двух реакциях восстановления принимает участие НАДФН+Н + (50% поступает из ПФП, 50% - от МАЛИК-фермента).

7) Только первая реакция протекает непосредственно в цитоплазме (регуляторная).

Остальные 4 циклических – на специальном пальмитатсинтазном комплексе (синтез только пальмитиновой кислоты)

8) Регуляторный фермент функционирует в цитоплазме – Ацетил-КоА-карбоксилаза (АТФ, вит. Н, биотин, IV класс).

Строение пальмитатсинтазного комплекса

Пальмитатсинтаза – фермент, состоящий из 2 субъединиц.

Каждая состоит из одной ппц, на которой есть 7 активных центров.

Каждый активный центр катализирует свою реакцию.

В каждой ппц находится ацилпереносящий белок (АПБ), на котором проходит синтез (содержит фосфопантетонат).

В каждой субъединице есть HS-группа. В одной HS-группа принадлежит цистеину, в другой – фосфопантотеновой кислоте.


Механизм

1) Ацетил-Коа, полученный из углеводов, не может выйти в цитоплазму, где протекает синтез ЖК. Он выходит через первую реакцию ЦТК – образование цитрата.

2) В цитоплазме цитрат распадается на Ацетил-Коа и оксалоацетат.

3) Оксалоацетат → малат (реакция ЦТК в обратном направлении).

4) Малат → пируват, который используется в ОДПВК.

5) Ацетил-КоА → синтез ЖК.

6) Ацетил-КоА под действием ацетил-КоА-карбоксилазы превращается в малонил-КоА.

Активирование фермента ацетил-КоА-карбоксилазы :

а) путем усиления синтеза субъединиц под действием инсулина – три тетрамера синтезируются отдельно

б) под действием цитрата три тетрамера объединяются, и фермент активируется

в) в период голодания глюкагон ингибирует фермент (путем фосфорилирования), синтез жиров не происходит

7) один ацетил КоА из цитоплазмы перемещается на HS-группу (от цистеина) пальмитат-синтазы; один малонил-КоА – на HS-группу второй субъединицы. Далее на пальмитат синтазе происходят:

8) их конденсация (ацетил КоА и малонил-КоА)

9) восстановление (донор – НАДФН+Н + из ПФП)

10) дегидротация

11) восстановление (донор – НАДФН+Н + от МАЛИК-фермента).

В результате ацильный радикал увеличивается на 2 атома углерода.



Мобилизация жиров

При голодании или длительной физической нагрузке выделяется глюкагон или адреналин. Они активируют в жировой ткани ТАГ-липазу, которая находится в адипоцитах и называется тканевой липазой (гормончувствительная). Она расщепляет жиры в жировой ткани на глицерол и ЖК. Глицерол идет в печень на глюконеогенез. ЖК поступают в кровь, связываются с альбумином и поступают к органам и тканям, используются как источник энергии (всеми органами, кроме мозга , который использует глюкозу и кетоновые тела при голодании или длительной физической нагрузке).

Для сердечной мышцы ЖК – основной источник энергии.

β-окисление

β-окисление – процесс расщепления ЖК с целью извлечения энергии.

1) Специфический путь катаболизма ЖК до ацетил-КоА.

2) Протекает в митохондриях.

3) Включает 4 повторяющиеся реакции (т.е. условно циклический):

окисление → гидратация → окисление → расщепление.

4) В конце каждого цикла ЖК укорачивается на 2 углеродных атома в виде ацетил-КоА (поступающий в ЦТК).

5) 1 и 3 реакции – реакции окисления, связаны с ЦПЭ.

6) Принимают участие вит. В 2 – кофермент ФАД, вит. РР – НАД, пантотеновая кислота – HS-KoA.

Механизм переноса ЖК из цитоплазмы в митохондрию.

1. ЖК перед поступлением в митохондрию должны быть активированы.

Только активированная ЖК = ацил-КоА может транспортироваться через двойную мембрану липидов.

Переносчик – L-карнитин.

Регуляторный фермент β-окисления – карнитинацилтрансфераза-I (KAT-I).

2. КАТ-I переносит ЖК в межмембранное пространство.

3. Под действием КАТ-I ацил-КоА переносится на переносчик L-карнитин.

Образуется ацилкарнитин.

4. При помощи встроенной во внутреннюю мембрану транслоказы ацилкарнитин перемещается в митохондрию.

5. В матриксе под действием КАТ-II ЖК отщепляется от карнитина и вступает в β-окисление.

Карнитин возвращается обратно в межмембранное пространство.

Реакции β-окисления

1. Окисление: ЖК окисляется с участием ФАД (фермент ацил-КоА-ДГ) → еноил.

ФАД поступает в ЦПЭ (р/о=2)

2. Гидратация: еноил → β-гидроксиацил-КоА (фермент еноилгидратаза)

3. Окисление: β-гидроксиацил-КоА → β-кетоацил-КоА (с участием НАД, который поступает в ЦПЭ и имеет р/о=3).

4. Расщепление: β-кетоацил-КоА → ацетил-КоА (фермент тиолаза, с участием HS-KoA).

Ацетил-КоА → ЦТК → 12 АТФ.

Ацил-КоА (С-2) → следующий цикл β-окисления.

Подсчет энергии при β-окислении

На примере меристиновой кислоты (14С).

· Подсчитываем, на сколько ацетил-КоА распадается ЖК

½ n = 7 → ЦТК (12АТФ) → 84 АТФ.

· Считаем, за сколько циклов они распадается

(1/2 n)-1=6·5(2 АТФ за 1 реакцию и 3 АТФ за 3 реакцию) = 30 АТФ

· Вычитаем 1 АТФ, постраченную на активацию ЖК в цитоплазме.

Итого – 113 АТФ.

Синтез кетоновых тел

Почти весь ацетил-КоА вступает в ЦТК. Небольшая часть используется для синтеза кетоновых тел = ацетоновых тел.

Кетоновые тела – ацетоацетат, β-гидроксибутират, ацетон (при патологии).

Нормальная концентрация – 0,03-0,05 ммоль/л.

Синтезируются только в печени из ацетил-КоА, полученного при β-окислении.

Используются как источник энергии всеми органами кроме печени (нет фермента).

При длительном голодании или сахарном диабете концентрация кетоновых тел может увеличиваться в десятки раз, т.к. в этих условиях ЖК являются основным источником энергии. В этих условиях протекает интенсивное β-окисление, и весь ацетил-КоА не успевает утилизироваться в ЦТК, т.к.:

· не хватает оксалоацетата (он используется при глюконеогенезе)

· в результате β-окисления образуется много НАДН+Н+ (в 3 реакции), который ингибирует изоцитрат-ДГ.

Следовательно, ацетил-КоА идет на синтез кетоновых тел.

Т.к. кетоновые тела – кислоты, они вызывают сдвиг кислотно-щелочного равновесия. Возникает ацидоз (из-за кетонемии ).

Они не успевают утилизироваться и появляются в моче как патологический компонент → кетоурия . Также появляется запах ацетона изо рта. Это состояние называется кетоз .

Обмен холестерола

Холестерол (Хс) – одноатомный спирт, в основе которого лежит циклопентанпергидрофенантреновое кольцо.

27 углеродных атомов.

Нормальная концентрация холестерола – 3,6-6,4 ммоль/л, допускается не выше 5.

· на построение мембран (фосфолипиды:Хс=1:1)

· синтез ЖчК

· синтез стероидных гормонов (кортизол, прогестерон, альдостерон, кальцитриол, эстроген)

· в коже под действием УФ используется для синтеза витамина D3 – холекальциферола.

В организме содержится около 140 г холестерола (в основном, в печени и мозге).

Суточная потребность – 0,5-1 г.

Содержится только в продуктах животного происхождения (яйца, сливочном масле, сыр, печень).

Хс не используется как источник энергии, т.к. его кольцо не расщепляется до СО 2 и Н 2 О и не выделяется АТФ (нет фермента).

Избыток Хс не выводится, не депонируется, откладывается в стенке крупных кровеносных сосудов в виде бляшек.

В организме синтезируется 0,5-1 г Хс. Чем больше потребляется его с пищей, тем меньше синтезируется в организме (в норме).

Хс в организме синтезируется в печени (80%), кишечнике (10%), коже (5%), надпочечниках, половых железах.

Даже у вегетарианцев может быть повышен уровень холестерина, т.к. для его синтеза необходимы только углеводы.

Биосинтез холестерола

Протекает в 3 стадии:

1) в цитоплазме - до образования мевалоновой кислоты (похоже на синтез кетоновых тел)

2) в ЭПР – до сквалена

3) в ЭПР – до холестерола

Около 100 реакций.

Регуляторный фермент – β-гидроксиметилглутарил-КоА-редуктаза (ГМГ-редуктаза). Статины, понижающие уровень холестерола, ингибируют этот фермент).

Регуляция ГМГ-редуктазы:

а) Ингибируется по принципу обратной отрицательной связи избытком пищевого холестерола

б) Может увеличиваться синтез фермента (эстроген) или снижаться (холестерол и ЖчК)

в) Фермент активируется инсулином путем дефосфорилирования

г) Если фермента много, то избыток может расщепляться протеолизом

Холестерол синтезируется из ацетил-КоА, полученного из углеводов (гликолиз → ОДПВК).

Образовавшийся холестерол в печени упаковывается вместе с жиром в ЛОНП незр. ЛОНП имеет апобелок В100, поступает в кровь и после присоединения апобелков С-II и Е превращается в ЛОНП зрелый, который поступает к ЛП-липазе. ЛП-липаза удаляет из ЛОНП жиры (50%), остается ЛНП, состоящий на 50-70% из эфиров холестерола.

· снабжает холестеролом все органы и ткани

· в клетках существуют рецепторы в В100, по которым они узнают ЛНП и поглощают его. Клетки регулируют поступление холестерола путем увеличения или уменьшения количества рецепторов к В100.

При сахарном диабете может происходить гликозилирование В100 (присоединение глюкозы). Следовательно, клетки не узнают ЛНП и возникает гиперхолестеролемия.

ЛНП может проникать в сосуды (атерогенная частица).

Более 50% ЛНП возвращаются в печень, где холестерол используется на синтез ЖчК и ингибирование собственного синтеза холестерола.

Существует механизм защиты от гиперхолестеролемии:

· регуляция синтеза собственного холестерола по принципу обратной отрицательной связи

· клетки регулируют поступление холестерола путем увеличения или уменьшения количества рецепторов к В100

· функционирование ЛВП

ЛВП синтезируется в печени. Имеет дисковидную форму, содержит мало холестерола.

Функции ЛВП :

· забирает избыток холестерола из клеток и других липопротеинов

· поставляет C-II и Е другим липопротеинам

Механизм функционирования ЛВП :

ЛВП имеет апобелок А1 и ЛХАТ (фермент лецитинхолестеринацилтрансфераза).

ЛВП выходит в кровь, и к нему подходит ЛНП.

По А1 ЛНП узнаются, что в них много холестерола, и активируют ЛХАТ.

ЛХАТ отщепляет ЖК от фосфолипидов ЛВП и переносит на холестерол. Образуются эфиры холестерола.

Эфиры холестерола гидрофобны, поэтому переходят внутрь липопротеина.


ТЕМА 8

ОБМЕН ВЕЩЕСТВ: ОБМЕН БЕЛКОВ

Белки – это высокомолекулярные соединения, состоящие из α-аминокислотных остатков, которые соединены между собой пептидными связями.

Пептидные связи расположены между α-карбоксильной группой одной аминокислоты и аминогруппой другой, следующей за ней, α-аминокислоты.

Функции белков (аминокислот) :

1) пластическая (основная функция) – из аминокислот синтезируются белки мышц, тканей, гемм, карнитин, креатин, некоторые гормоны и ферменты;

2) энергетическая

а) в случае избыточного поступления в организм с пищей (>100 г)

б) при длительном голодании

Особенность:

Аминокислоты, в отличие от жиров и углеводов, не депонируются .

Количество свободных аминокислот в организме – около 35 г.

Источники белка для организма :

· белки пищи (основной источник)

· белки тканей

· синтезированные из углеводов.

Азотистый баланс

Т.к. 95% всего азота организма принадлежит аминокислотам, то о их обмене можно судить по азотистому балансу – соотношение поступающего азота и выделенного с мочой.

ü Положительный – выделяется меньше, чем поступает (у детей, беременных, в период выздоровления после болезни);

ü Отрицательный – выделяется больше, чем поступает (пожилой возраст, период длительного заболевания);

ü Азотистое равновесие – у здоровых людей.

Т.к. белки пищи – основной источник аминокислот, то говорят о «полноценности белкового питания ».

Все аминокислоты делятся на:

· заменимые (8) – Ала, Гли, Сер, Про, Глу, Глн, Асп, Асн;

· частично заменимые (2) – Арг, Гис (синтезируются медленно);

· условно заменимые (2) – Цис, Тир (могут синтезироваться при условии поступления незаменимых – Мет → Цис, Фен →Тир);

· незаменимые (8) – Вал, Иле, Лей, Лиз, Мет, Тре, Фен, Тпф.

В связи с этим выделяются белки:

ü Полноценные – содержат все незаменимые аминокислоты

ü Неполноценные – не содержат Мет и Тпф.

Переваривание белков

Особенности:

1) Белки перевариваются в желудке, тонком кишечнике

2) Ферменты – пептидазы (расщепляют пептидные связи):

а) экзопептидазы – по краям с C-N-концов

б) эндопептидазы – внутри белка

3) Ферменты желудка и поджелудочной железы вырабатываются в неактивном виде – проферменты (т.к. они бы переваривали собственные ткани)

4) Ферменты активируются частичным протеолизом (отщепление части ппц)

5) Некоторые аминокислоты подвергаются гниению в толстом кишечнике


1. В ротовой полости не перевариваются.

2. В желудке на белки действует пепсин (эндопептидаза). Он расщепляет связи, образованные аминогруппами ароматических аминокислот (Тир, Фен, Тпф).


Пепсин вырабатывается главными клетками в виде неактивного пепсиногена .

Обкладочные клетки вырабатывают соляную кислоту.

Функции HCl :

ü Создает оптимум рН для пепсина (1,5 – 2,0)

ü Активирует пепсиноген

ü Денатурирует белки (облегчает действие фермента)

ü Бактерицидное действие

Активация пепсиногена

Пепсиноген под действием HCl превращается в активный пепсин путем отщепления 42 аминокислот медленно. Затем активный пепсин быстро активирует пепсиноген (аутокаталитически ).

Таким образом, в желудке белки расщепляются на короткие пептиды, которые поступают в кишечник.

3. В кишечнике на пептиды действуют ферменты поджелудочной железы.

Активация трипсиногена, химотрипсиногена, проэластазы, прокарбоксипептидазы

В кишечнике под действием энтеропептидазы активируется трипсиноген . Затем активированный из него трипсин активирует все остальные ферменты путем частичного протеолиза (химотрипсиноген → химотрипсин , проэластаза → эластаза , прокарбоксипептидаза → карбоксипептидаза ).

Трипсин расщепляет связи, образованные карбоксильными группами Лиз или Арг.


Химотрипсин – между карбоксильными группами ароматических аминокислот.

Эластаза - связи, образованные карбоксильными группами Ала или Гли.

Карбоксипептидаза расщепляет карбоксильные связи с С-конца.

Таким образом, в кишечнике образуются короткие ди-, трипептиды.

4. Под действием ферментов кишечника они расщепляются до свободных аминокислот.

Ферменты – ди-, три-, аминопептидазы . Они не обладают видовой специфичностью.

Образовавшиеся свободные аминокислоты всасываются вторично активным транспортом с Na + (против градиента концентрации).

5. Некоторые аминокислоты подвергаются гниению.

Гниение – ферментативный процесс расщепления аминокислот до малотоксичных продуктов с выделением газов (NH 3 , СН 4 , СО 2 , меркаптан).

Значение: для поддержания жизнедеятельности микрофлоры кишечника (при гниении Тир образует токсичные продукты фенол и крезол, Тпф – индол и скатол). Токсичные продукты поступают в печень и обезвреживаются.

Катаболизм аминокислот

Основной путь – дезаминирование – ферментативный процесс отщепления аминогруппы в виде аммиака и образования безазотистой кетокислоты.

· Окислительное дезаминирование

· Неокислительное (Сер, Тре)

· Внутримолекулярное (Гис)

· Гидролитическое

Окислительное дезаминирование (основное)

А) Прямое – только для Глу, т.к. для всех остальных ферменты неактивны.

Протекает в 2 стадии:

1) Ферментативное

2) Спонтанное

В итоге образуется аммиак и α-кетоглутарат.


Функции трансаминирования :

ü Т.к. реакция обратимая, служит для синтеза заменимых аминокислот;

ü Начальный этап катаболизма (трансаминирование не является катаболизмом, т.к. количество аминокислот не меняется);

ü Для перераспределения азота в организме;

ü Участвует в малат-аспартатном челночном механизме переноса водорода в гликолизе (6 реакция).

Для определения активности АЛТ и АСТ в клинике для диагностики заболеваний сердца и печени измеряют коэффициент де Ритиса:

При 0,6 – гепатит,

1 – цирроз,

10 – инфаркт миокарда.

Декарбоксилирование аминокислот – ферментативный процесс отщепления карбоксильной группы в виде СО 2 от аминокислот.

В результате образуются биологически активные вещества – биогенные амины .

Ферменты – декарбоксилазы.

Кофермент – пиридоксальфосфат ← вит. В6.

После оказания действия биогенные амины обезвреживаются 2 путями:

1) Метилирование (добавление CH 3 ; донор - SAM);

2) Окисление с отщеплением аминогруппы в виде NH 3 (фермент MAO – моноаминоксидаза).


20.1.1. Высшие жирные кислоты могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА , образующийся в митохондриях из пирувата - продукта гликолитического распада глюкозы. Место синтеза жирных кислот - цитоплазма клеток, где имеется мультиферментный комплекссинтетаза высших жирных кислот . Этот комплекс состоит из шести ферментов, связанных с ацилпереносящим белком , который содержит две свободные SH-группы (АПБ-SH). Синтез происходит путём полимеризации двууглеродных фрагментов, конечным продуктом его является пальмитиновая кислота - насыщенная жирная кислота, содержащая 16 атомов углерода. Обязательными компонентами, участвующими в синтезе, являются НАДФН (кофермент, образующийся в реакциях пентозофосфатного пути окисления углеводов) и АТФ.

20.1.2. Ацетил-КоА поступает из митохондрий в цитоплазму при помощи цитратного механизма (рисунок 20.1). В митохондриях ацетил-КоА взаимодействует с оксалоацетатом (фермент -цитратсинтаза ), образующийся цитрат переносится через митохондриальную мембрану при помощи специальной транспортной системы. В цитоплазме цитрат реагирует с HS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат (фермент - цитратлиаза ).

Рисунок 20.1. Перенос ацетильных групп из митохондрий в цитоплазму.

20.1.3. Начальной реакцией синтеза жирных кислот является карбоксилирование ацетил-КоА с образованием малонил-КоА (рисунок 20.2). Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными высших жирных кислот.


Рисунок 20.2. Реакция карбоксилирования ацетил-КоА.

Затем ацетил-КоА и малонил-КоА взаимодействуют с SH-группами ацилпереносящего белка (рисунок 20.3).


Рисунок 20.3. Взаимодействие ацетил-КоА и малонил-КоА с ацилпереносящим белком.

Рисунок 20.4. Реакции одного цикла биосинтеза жирных кислот.

Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты.

20.1.4. Запомните основные особенности биосинтеза жирных кислот по сравнению с β-окислением:

  • синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление - в митохондриях;
  • участие в процессе связывания СО2 с ацетил-КоА;
  • в синтезе жирных кислот принимает участие ацилпереносящий белок, а в окислении - коэнзим А;
  • для биосинтеза жирных кислот необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления - НАД+ и ФАД.