Регуляция дыхания. Центральные и периферические хеморецепторы, их роль в регуляции дыхания Хеморецепторы дыхательного центра реагируют на концентрацию

По современным представлениям дыхательный центр - это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют несколько уровней регуляции:

1) спинальный;

2) бульбарный;

3) супрапонтиальный;

4) корковый.

Спинальный уровень представлен мотонейронами передних рогов спинного мозга, аксоны которых иннервируют дыхательные мышцы. Этот компонент не имеет самостоятельного значения, так как подчиняется импульсам из вышележащих отделов.

Нейроны ретикулярной формации продолговатого мозга и моста образуют бульбарный уровень . В продолговатом мозге выделяют следующие виды нервных клеток:

1) ранние инспираторные (возбуждаются за 0,1-0,2 с до начала активного вдоха);

2) полные инспираторные (активируются постепенно и посылают импульсы всю фазу вдоха);

3) поздние инспираторные (начинают передавать возбуждение по мере угасания действия ранних);

4) постинспираторные (возбуждаются после торможения инспираторных);

5) экспираторные (обеспечивают начало активного выдоха);

6) преинпираторные (начинают генерировать нервный импульс перед вдохом).

Аксоны этих нервных клеток могут направляться к мотонейронам спинного мозга (бульбарные волокна) или входить в состав дорсальных и вентральных ядер (протобульбарные волокна).

Нейроны продолговатого мозга, входящие в состав дыхательного центра, обладают двумя особенностями:

1) имеют реципрокные отношения;

2) могут самопроизвольно генерировать нервные импульсы.

Пневмотоксический центр образован нервными клетками моста. Они способны регулировать активность нижележащих нейронов и приводят к смене процессов вдоха и выдоха. При нарушении целостности ЦНС в области ствола мозга понижается частота дыхания и увеличивается продолжительность фазы вдоха.

Супрапонтиальный уровень представлен структурами мозжечка и среднего мозга, которые обеспечивают регуляцию двигательной активности и вегетативной функции.

Корковый компонент состоит из нейронов коры больших полушарий, влияющих на частоту и глубину дыхания. В основном они оказывают положительное влияние, особенно на моторные и орбитальные зоны. Кроме того, участие коры больших полушарий говорит о возможности самопроизвольно изменять частоту и глубину дыхания.

Таким образом, в регуляции дыхательного процесса принимают различные структуры коры больших полушарий, но ведущую роль играет бульбарный отдел.

2. Гуморальная регуляция нейронов дыхательного центра

Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.

Г. Фредерик провел опыт перекрестного кровообращения, в котором соединил сонные артерии и яремные вены двух собак. В результате голова собаки № 1 получала кровь от туловища животного № 2, и наоборот. При пережатии трахеи у собаки № 1 произошло накопление углекислого газа, который поступил в туловище животного № 2 и вызвал у него повышение частоты и глубины дыхания - гиперпноэ. Такая кровь поступила в голову собаки под № 1 и вызвала понижение активности дыхательного центра вплоть до остановки дыхания гипопноэ и апопноэ. Опыт доказывает, что газовый состав крови напрямую влияет на интенсивность дыхания.

Возбуждающее действие на нейроны дыхательного центра оказывают:

1) понижение концентрации кислорода (гипоксемия);

2) повышение содержания углекислого газа (гиперкапния);

3) повышение уровня протонов водорода (ацидоз).

Тормозное влияние возникает в результате:

1) повышения концентрации кислорода (гипероксемии);

2) понижения содержания углекислого газа (гипокапнии);

3) уменьшения уровня протонов водорода (алкалоза).

В настоящее время учеными выделено пять путей влияния газового состава крови на активность дыхательного центра:

1) местное;

2) гуморальное;

3) через периферические хеморецепторы;

4) через центральные хеморецепторы;

5) через хемочувствительные нейроны коры больших полушарий.

Местное действие возникает в результате накопления в крови продуктов обмена веществ, в основном протонов водорода. Это приводит к активации работы нейронов.

Гуморальное влияние появляется при увеличении работы скелетных мышц и внутренних органов. В результате выделяются углекислый газ и протоны водорода, которые стоком крови поступают к нейронам дыхательного центра и повышают их активность.

Периферические хеморецепторы - это нервные окончания с рефлексогенных зон сердечно-сосудистой системы (каротидные синусы, дуга аорты и т. д.). Они реагируют на недостаток кислорода. В ответ начинают посылаться импульсы в ЦНС, приводящие к увеличению активности нервных клеток (рефлекс Бейнбриджа).

В состав ретикулярной формации входят центральные хеморецепторы , которые обладают повышенной чувствительностью к накоплению углекислого газа и протонов водорода. Возбуждение распространяется на все зоны ретикулярной формации, в том числе и на нейроны дыхательного центра.

Нервные клетки коры больших полушарий также реагируют на изменение газового состава крови.

Таким образом, гуморальное звено играет важную роль в регуляции работы нейронов дыхательного центра.

3. Нервная регуляция активности нейронов дыхательного центра

Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний - эпизодические и постоянные.

К постоянным относятся три вида:

1) от периферических хеморецепторов сердечно-сосудистой системы (рефлекс Гейманса);

2) от проприорецепторов дыхательных мышц;

3) от нервных окончаний растяжений легочной ткани.

В процессе дыхания мышцы сокращаются и расслабляются. Импульсы от проприорецепторов поступают в ЦНС одновременно к двигательным центрам и нейронам дыхательного центра. Происходит регуляция работы мышц. При возникновении каких-либо препятствий дыхания инспираторные мышцы начинают еще больше сокращаться. В результате устанавливается зависимость между работой скелетных мышц и потребностями организма в кислороде.

Рефлекторные влияния от рецепторов растяжения легких были впервые обнаружены в 1868 г. Э. Герингом и И. Брейером. Они обнаружили, что нервные окончания, расположенные в гладкомышечных клетках, обеспечивают три вида рефлексов:

1) инспираторно-тормозные;

2) экспираторно-облегчающие;

3) парадоксальный эффект Хеда.

При нормальном дыхании возникает инспираторно-тормозные эффекты. Во время вдоха легкие растягиваются, и импульсы от рецепторов по волокнам блуждающих нервов поступают в дыхательный центр. Здесь происходит торможение инспираторных нейронов, что приводит к прекращению активного вдоха и наступлению пассивного выдоха. Значение этого процесса заключается в обеспечении начала выдоха. При перегрузке блуждающих нервов смена вдоха и выдоха сохраняется.

Экспираторно-облегчающий рефлекс можно обнаружить только в ходе эксперимента. Если растягивать легочную ткань в момент выдоха, то наступление следующего вдоха задерживается.

Парадоксальный эффект Хеда можно осуществить в ходе опыта. При максимальном растяжении легких в момент вдоха наблюдается дополнительный вдох или вздох.

К эпизодическим рефлекторным влияниям относятся:

1) импульсы от ирритарных рецепторов легких;

2) влияния с юкстаальвеолярных рецепторов;

3) влияния со слизистой оболочки дыхательных путей;

4) влияния от рецепторов кожи.

Ирритарные рецепторы расположены в эндотелиальном и субэндотелиальном слое дыхательных путей. Они выполняют одновременно функции механорецепторов и хеморецепторов. Механорецепторы обладают высоким порогом раздражения и возбуждаются при значительным спадании легких. Подобные спадания наступают в норме 2-3 раза в час. При уменьшении объема легочной ткани рецепторы посылают импульсы к нейронам дыхательного центра, что приводит к дополнительному вдоху. Хеморецепторы реагируют на появление частиц пыли в слизи. При активации ирритарных рецепторов возникают чувство першения в горле и кашель.

Юкстаальвеолярные рецепторы находятся в интерстиции. Они реагируют на появление химических веществ - серотонина, гистамина, никотина, а также на изменение жидкости. Это приводит к особому виду одышки при отеке (при пневмонии).

При сильном раздражении слизистой оболочки дыхательных путей происходит остановка дыхания, а при умеренном появляются защитные рефлексы. Например, при раздражении рецепторов носовой полости возникает чиханье, при активации нервных окончаний нижних дыхательных путей - кашель.

На частоту дыхания оказывают влияние импульсы, поступающие от температурных рецепторов. Так, например, при погружении в холодную воду наступает задержка дыхания.

При активации ноцецепторов сначала наблюдается остановка дыхания, а затем происходит постепенное учащение.

Во время раздражения нервных окончаний, заложенных в тканях внутренних органов, происходит уменьшение дыхательных движений.

При повышении давления наблюдается резкое понижение частоты и глубины дыхания, что влечет уменьшение присасывающей способности грудной клетки и восстановление величины кровяного давления, и наоборот.

Таким образом, рефлекторные влияния, оказываемые на дыхательный центр, поддерживают на постоянном уровне частоту и глубину дыхания.

Центральные хеморецепторы обнаружены в продолговатом мозге на вентромедиальной поверхности на глубине не более 0.2 мм. В этой области расположены два рецептивных поля (рисунок 15), обозначаемые буквами MиL, между ними обнаружено небольшое полеS. ПолеSне чувствительно к химизму среды, но его разрушение приводит к исчезновению эффектов возбуждения полейMиL, Этой промежуточной зоне принадлежит важная роль в передаче информации от полейMиLнепосредственно дыхательным вентральным и дорзальным ядрам, и передаче информации ядрам другой стороны продолговатого мозга.

В этой же области проходят афферентные пути от периферических хеморецепторов.

Структуры Sи М полей интегрируют афферентные сигналы от расположенных выше нейронных образований и передают тонизирующие влияния вазоконстрикторным нейронам спинного мозга.

Рисунок 15. Расположение хеморецепторов на вентральной поверхности продолговатого мозга

M,L,Sполя, участвующие в хеморецепции.

Р – мост,

П – пирамида,

VиXII– черепномозговые нервы,

С1 первый спинномозговой корешок

В настоящее время совершенно точно установлено, что центральные хеморецептивные нейроны возбуждаются только при действии на них ионов водорода.

Каким же образом повышение напряжения СО 2 приводит к возбуждению этих структур? Оказывается хемочувствительные нейроны расположены во внеклеточной жидкости и воспринимают изменения рН, вызванные динамикой СО 2 в крови.Основная задача этого механизма - информировать дыхательный центр об отклонения рН, а следовательно, и концентрации СО 2 в крови.

Артериальные хеморецепторы

Периферические или артериальные хеморецепторы расположены в известной рефлексогенной зоне – дуге аорты и каротидном синусе (рисунки 17А и Б), и представлены каротидными и аортальными телами. Здесь же локализованы и барорецепторы, принимающие участие в регуляции артериального давления.

Рисунок 17 А. Периферические хеморецепторы

В сосудистой рефлексогенной зоне

Из двух хеморецептивных зон артериального русла - аортальной и синокаротидной - в регуляции дыхания существенную роль играет синокаротидная. Периферические хеморецепторы дополняют деятельность центральных. Взаимодействие центральных и периферических структур особенно важно в условиях дефицита кислорода.

Дело в том, что центральные хеморецепторы очень чувствительны к недостатку кислорода. Клетки при гипоксии могут совсем потерять свою чувствительность, при этом снижается активность дыхательных нейронов. В этих условиях дыхательный центр получает основную возбуждающую стимуляцию от периферических хеморецепторов, для которых основным стимулом является именно дефицит кислорода. Т аким образом, артериальные хеморецепторы служат «аварийным» механизмом стимуляции дыхательного центра в условиях снижения снабжения мозга кислородом.

Итак, центральные и периферические хеморецепторы передают в дыхательный центр информацию о напряжении кислорода и углекислого газа в крови, они возбуждаются и увеличивают частоту импульсов при снижении содержания кислорода и повышении углекислого газа.

Напряжение в артериальной крови О 2 и СО 2 , а также рН, как уже известно, зависит от вентиляции легких.

Но, в свою очередь, они являются факторами, влияющими на интенсивность этой вентиляции, то есть они влияют на деятельность ДЦ.

Опыт Фредерико с перекрестным кровообращением. У двух собак соединяли перекрестно сонные артерии с яремными венами при перевязанных позвоночных артериях. В результате голова первой собаки снабжалась кровью второй собаки, а голова второй собаки - кровью первой. Если у первой собаки пережать трахею (вызвать ас-фиксию), то у второй собаки наступало гиперпноэ. У первой собаки, несмотря на повышение рСО 2 и понижение рО 2, возникает апноэ.

Причина: в сонную артерию первой собаки поступала кровь второй собаки, у которой в результате гипервентиляции, в крови понижалось рСО 2 . Это влияние осуществляется не непосредственно на его нейроны, а через посредство специальных хеморецепторов, распо-ложенных:

1. В центральных структурах (центральные, медулярные, бульбар-ные хеморецепторы).

2. На периферии (артериальные хеморецепторы).

От этих рецепторов в дыхательный центр поступает афферентная сигнализация о газовом составе крови.

Таким образом образуются своеобразные регуляторные цепи с обратной связью, деятельность которых направлена на поддержание гемостаза, соответствия дыхательной функции метаболическим пот-ребностям организма.

Роль центральных хеморецепторов . Центральные хемореце-пторы располагаются в ПМ. Перфузия участка ПМ в области расположения данных рецепторов раствором с пониженным рН приводит к резкому усилению дыхания, а с повы-шением рН - к ослаблению дыхания.

Обнаружены 2 рецепторных поля в ПМ. Их обозначили буквами М и L. Между ними находится большое поле S. Нейроны данного поля нечувствительны к рН. Разрушение поля S приводит к потере чувствительности полей М и L к рН. Полагают, что здесь проходят аф-ферентные пути от хеморецепторов к ДЦ.

В естественных условиях центральные хеморецепторы постоянно стимулируются Н + , содержащимися в межклеточной жидкости ство-ла мозга, которая весьма схожа по составу со спинно-мозговой жидкостью. Концентрация Н + в ней находится в зависимости от напряжения СО 2 в артериальной крови. Снижение рН на 0,01 вызывает увеличение вентиляции легких на 4 л/мин.

Вместе с тем, центральные хеморецепторы реагируют и на изменения рСО 2 , но в меньшей степени, чем изменения рН. Пола-гают, что основным химическим фактором, влияющим на цент-ральные хеморецепторы является содержание Н + в межклеточной жидкости ствола мозга, а действие СО 2 связано с образованием этих ионов.

Роль артериальных хеморецепторов. О 2 , СО 2 и Н + могут дей-ствовать на структуры НС не только центрально, непосредственно, но и путем возбуждения периферических хеморецепторов.



Наиболее важными из них является:

1. Параганглии, расположенные у места деления общей сонной артерии на внутреннюю и наружную, называемые каротидными тельцами (иннервируются веточками языкоглоточного нерва).

2. Параганглии дуги аорты, так называемые аортальные тельца (иннервируются волокнами п.vagus).

Хеморецепторы указанных зон, возбуждаются при повышении рСО 2 и понижении рО 2 и рН. Это можно показать путем перфузии указанных участков артерий кровью, изменяя ее параметры рО 2 , рСО 2 , рН, регистрируя при этом изменения биоэлектрической активности афферентных волокон. Показано, что влияние О 2 на дыхательный центр опосредовано исключительно периферическими хеморецеп-торами.

Что касается СО 2 и Н + , то они обладают преимущественно центральным действием, хотя при сдвигах рСО 2 и рН импульсация от хеморецепторов изменяется, но незначительно, что свидетельствует об относительно небольшом влиянии этих факторов на ДЦ опоследо-ванном периферическими хеморецепторами.

Таким образом, нейроны ДЦ поддерживаются в состоянии активности импульсами, поступающими от центральных (бульбар-ных) и периферических (артериальных) хеморецепторов, реагирующих на изменение 3-х параметров артериальной крови:

1. Снижение рО 2 (гипоксемию);

2. Повышение рСО 2 (гиперкапнию);

3. Снижению рН (ацидоз).

Главным стимулом дыхания является гиперкапнический. Чем выше рСО 2 (а с ним связана и рН) в артериальной крови и межкле-точной жидкости, тем выше возбуждение бульбарных хемочувстви-тельных структур и артериальных хеморецепторов, тем выше вентиляция легких.



Меньшее значение в регуляции дыхания имеет гипоксический стимул (крутизна падения рО 2 в крови наступает лишь тогда, когда рО 2 снижается ниже 60-70 мм Hg).

Но особенно сильным стимулом центрального дыхательного механизма является сочетанное действие гипоксемии и гиперкап-нии(и связанным с ним ацидозом). Это вполне понятно: усиление окислительных процессов в организме сопряжено:

· с повышением поглощения О 2 ;

· с повышением образования СО 2 ;

· с повышением образования кислых продуктов обмена.

Это требует увеличения объема вентиляции легких.

text_fields

text_fields

arrow_upward

Основное назначение регуляции внешнего дыхания заключается в поддержании оптималь­ ного газового состава артериальной крови - напряжения О 2 , на­пряжения СО 2 и, тем самым, в значительной мере - концентрации водородных ионов .

У человека относительное постоянство напряже­ния О 2 и СО 2 артериальной крови сохраняется даже при физической работе, когда потребление О 2 и образование СО 2 возрастает в не­сколько раз. Это возможно потому, что при работе вентиляция легких увеличивается пропорционально интенсивности метаболичес­ких процессов. Избыток СО 2 и недостаток О 2 во вдыхаемом воздухе также вызывает увеличение объемной скорости дыхания, благодаря чему парциальное давление О 2 и СО 2 в альвеолах и в артериальной крови почти не изменяется.

Особое место в гуморальной регуляции деятельности дыхательного центра имеет изменение в крови напряжения СО 2 . При вдыхании газовой смеси, содержащей 5-7% СО 2 , увеличение парциального давления СО 2 в альвеолярном воздухе задерживает выведение СО 2 из венозной крови. Связанное с этим повышение напряжения СО 2 в артериальной крови приводит к увеличению легочной вентиляции в 6-8 раз. Благодаря такому значительному увеличению объема дыха­ния, концентрация СО 2 в альвеолярном воздухе возрастает не более, чем на 1%. Увеличение содержания СО 2 в альвеолах на 0.2% вы­зывает увеличение вентиляции легких на 100%. Роль СО 2 как глав­ного регулятора дыхания, выявляется и в том, что недостаток со­держания СО 2 в крови понижает деятельность дыхательного центра и приводит к уменьшению объема дыхания и даже к полному пре­кращению дыхательных движения (апное). Это происходит, напри­мер, при искусственной гипервентиляции: произвольное увеличение глубины и частоты дыхания приводит к гипокапнии - снижению парциального давления СО 2 в альвеолярном воздухе и артериальной крови. Поэтому после прекращения гипервентиляции появление очередного вдоха задерживается, а глубина и частота последующих вдохов вначале снижается.

Указанные изменения газового состава внутренней среды орга­низма оказывают влияние на дыхательный центр опосредованно, через специальные хемочувствителъные рецепторы , расположенные непосредственно в структурах продолговатого мозга («центральные хеморецепторы« ) и в сосудистых рефлексогенных зонах перифери­ческие хеморецепторы «) .

Регуляции дыхания Центральными (медуллярными) хеморецепторами

text_fields

text_fields

arrow_upward

Центральными (медуллярными) хеморецепторами, постоянно участву­ющими в регуляции дыхания, называют нейрональные структуры в продолговатом мозге, чувствительные к напряжению СО 2 и кислотно-щелочному состоянию омывающей их межклеточной мозговой жид­кости. Хемочувствительные зоны имеются на переднебоковой поверх­ности продолговатого мозга около выходов подъязычного и блужда­ющего нервов в тонком слое мозгового вещества на глубине 0.2-0.4 мм. Медуллярные хеморецепторы постоянно стимулируются ионами водорода в межклеточной жидкости ствола мозга, концентрация кото­рых зависит от напряжения СО 2 в артериальной крови. Спинномоз­говая жидкость отделена от крови гемато-энцефалическим барьером, относительно непроницаемым для ионов Н + и НСО 3 , но свободно пропускающим молекулярный СО 2 . При повышении напряжения СО 2 в крови он диффундирует из кровеносных сосудов головного мозга в спинномозговую жидкость, в результате чего, в ней накапливаются ионы Н + , которые стимулируют медуллярные хеморецепторы. При повышении напряжения СО 2 и концентрации водородных ионов в жидкости, омывающей медуллярные хеморецепторы, увеличивается активность инспираторных и падает активность экспираторных нейро­нов дыхательного центра продолговатого мозга. В результате этого, дыхание становится более глубоким и вентиляция легких растет, глав­ным образом, за счет увеличения объема каждого вдоха. Напротив, снижение напряжения СО 2 и подщелачивание межклеточной жидкости ведет к полному или частичному исчезновению реакции увеличения объема дыхания на избыток СО 2 (гиперкапнию) и ацидоз, а также к резкому угнетению инспираторной активности дыхательного центра вплоть до остановки дыхания.

Регуляции дыхания Периферическими хеморецепторами

text_fields

text_fields

arrow_upward

Периферические хеморецепторы, воспринимающие газовый состав артериальной крови, расположены в двух областях:

1) Дуге аорты,

2) Месте деления (бифуркация) общей сонной артерии (каротидный си­ нус),

т.е. в тех же зонах, что и барорецепторы, реагирующие на изменения кровяного давления. Однако, хеморецепторы представля­ют собой самостоятельные образования, заключенные в особых тель­цах - клубочках или гломусах, которые находятся вне сосуда. Аффе­рентные волокна от хеморецепторов идут: от дуги аорты - в со­ставе аортальной ветви блуждающего нерва, а от синуса сонной артерии - в каротидной ветви языкоглоточного нерва, так называ­емом нерве Геринга. Первичные афференты синусного и аортально­го нерва проходят через ипсилатеральное ядро солитарного тракта. Отсюда хеморецептивные импульсы поступают к дорсальной группе дыхательных нейронов продолговатого мозга.

Артериальные хеморецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение напряжения кислорода в крови (гипоксемию). Даже в обычных (нормоксических) условиях эти рецепторы находятся в состоянии постоянного возбуждения, которое исчезает только при вдыхании человеком чистого кислорода. Умень­шение напряжения кислорода в артериальной крови ниже нормаль­ного уровня вызывает усиление афферентации из аортальных и синокаротидных хеморецепторов.

Хеморецепторы каротидного синуса . Вдыхание гипоксической смеси ведет к учащению и увеличению регулярности импульсов, посыла­емых хеморецепторами каротидного тельца. Повышению напряжения СО 2 артериальной крови и соответству­ющему подъему вентиляции также сопутствует рост импульсной активности, направляемой в дыхательный центр от хеморецепторов каротидного синуса. Особенность роли, которую играют артериаль­ные хеморецепторы в контроле за напряжением углекислоты, состо­ит в том, что они ответственны за начальную, быструю, фазу вен­тиляторной реакции на гиперкапнию. При их денервации указанная реакция наступает позднее и оказывается более вялой, так как развивается в этих условиях лишь после того, как повысится на­пряжение СО 2 области хемочувствительных мозговых структур.

Гиперкапническая стимуляция артериальных хеморецепторов, по­добно гипоксической, носит постоянный характер. Эта стимуляция начинается при пороговом напряжении СО 2 20-30 мм рт.ст и, сле­довательно, имеет место уже в условиях нормального напряжения СО 2 в артериальной крови (около 40 мм рт.ст.).

Взаимодей­ствие гуморальных стимулов дыхания

text_fields

text_fields

arrow_upward

Важным моментом для регуляции дыхания является взаимодей­ствие гуморальных стимулов дыхания. Оно проявляется, например, в том, что на фоне повышенного артериального напряжения СО 2 или увеличенной концентрации водородных ионов вентиляторная ре­акция на гипоксемию становится интенсивнее. Поэтому снижение парциального давления кислорода и одновременное повышение пар­циального давления углекислого газа в альвеолярном воздухе вызы­вают нарастание легочной вентиляции, превышающее арифметичес­кую сумму ответов, которые вызывают эти факторы, действуя по­рознь. Физиологическое значение этого явления заключается в том, что указанное сочетание стимуляторов дыхания имеет место при мышечной деятельности, которая сопряжена с максимальным подъ­емом газообмена и требует адекватного ему усиления работы дыха­тельного аппарата.

Установлено, что гипоксемия снижает порог и увеличивает ин­тенсивность вентиляторной реакции на СО 2 . Однако, у человека при недостатке кислорода во вдыхаемом воздухе увеличение вентиляции происходит лишь при условии, когда артериальное напряжение СО 2 составляет не менее 30 мм рт.ст. При уменьшении парциального давления О 2 во вдыхаемом воздухе (например, при дыхании газовы­ми смесями с низким содержанием О 2 , при пониженном атмосфер­ном давлении в барокамере или в горах) возникает гипервентиля­ция, направленная на предупреждение значительного снижения пар­циального давления О 2 в альвеолах и напряжения его в артеальной крови. При этом из-за гипервентиляции наступает снижение пар­циального давления СО 2 в альвеолярном воздухе и развивается гипокапния, приводящая к уменьшению возбудимости дыхательного центра. Поэтому при гипоксической гипоксии, когда парциальное давление СО 2 во вдыхаемом воздухе снижается до 12 кПа (90 мм рт.ст.) и ниже, система регуляции дыхания может лишь частично обеспечить поддержание напряжения О 2 и СО 2 на должном уровне. В этих условиях, несмотря на гипервентиляцию, напряжение О 2 все же снижается, и возникает умеренная гипоксемия.

В регуляции дыхания функции центральных и периферических рецепторов постоянно дополняют друг друга и, в общем, проявляют синергизм. Так, импульсация хеморецепторов каротидного тельца усиливает эффект стимуляции медуллярных хемочувствительных структур. Взаимодействие центральных и периферических хеморе­цепторов имеет жизненно важное значение для организма, напри­мер, в условиях дефицита О 2 . При гипоксии из-за снижения окис­лительного метаболизма в мозге чувствительность медуллярных хе­морецепторов ослабевает или исчезает, вследствие чего снижается активность дыхательных нейронов. Дыхательный центр в этих усло­виях получает интенсивную стимуляцию от артериальных хеморе­цепторов, для которых гипоксемия является адекватным раздражи­телем. Таким образом, артериальные хеморецепторы служат «ава­рийным» механизмом реакции дыхания на изменение газового со­става крови, и, прежде всего, на дефицит кислородного снабжения мозга.

Хеморецепторы, стимулируемые увеличением напряжения двуокиси углерода и снижением напряжения кислорода, находятся в каротидных синусах и дуге аорты. Они расположены в специальных маленьких тельцах, обильно снабжаемых артериальной кровью. Важными для регуляции дыхания являются каротидные хеморецепторы. Аортальные хеморецепторы на дыхание влияют слабо и имеют большее значение для регуляции кровообращения.

Каротидные тельца расположены в развилке общей сонной артерии на внутреннюю и наружную. Масса каждого каротидного тельца всего около 2 мг. В нем содержатся относительно крупные эпителиоидные клетки I типа, окруженные мелкими интерстициальными клетками II типа.

С клетками I типа контактируют окончания афферентных волокон синусного нерва (нерва Геринга), который является ветвью языкоглоточного нерва. Какие структуры тельца -- клетки I или II типа либо нервные волокна -- являются собственно рецепторами, точно не установлено.

Хеморецепторы каротидных и аортальных телец являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные сигналы в волокнах, отходящих от каротидных телец, можно зарегистрировать и при нормальном (100 мм рт. ст.) напряжении кислорода в артериальной крови. При снижении напряжения кислорода от 80 до 20 мм рт. ст. частота импульсов увеличивается особенно значительно.

Кроме того, афферентные влияния каротидных телец усиливаются при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов.

Стимулирующее действие гипоксии и гиперкапнии на данные хеморецепторы взаимно усиливается. Наоборот, в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается.

Хеморецепторы телец особенно чувствительны к колебаниям газового состава крови.

Степень их активации возрастает при колебаниях напряжения кислорода и двуокиси углерода в артериальной крови даже в зависимости от фаз вдоха и выдоха при глубоком и редком дыхании. Чувствительность хеморецепторов находится под нервным контролем. Раздражение эфферентных парасимпатических волокон снижает чувствительность, а раздражение симпатических волокон повышает ее Хеморецепторы (особенно каротидных телец) информируют дыхательный центр о напряжении кислорода и двуокиси углерода в крови, направляющейся к мозгу. Центральные хеморецепторы. После денервации каротидных и аортальных телец исключается усиление дыхания в ответ на гипоксию. В этих условиях гипоксия вызывает только снижение вентиляции легких, но зависимость деятельности дыхательного центра от напряжения двуокиси углерода сохраняется. Она обусловлена функцией центральных хеморецепторов.

Центральные хеморецепторы были обнаружены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание.

Если рН раствора увеличить, то дыхание ослабевает (у животных с денервированными каротидными тельцами останавливается на выдохе, наступает апноэ). То же присходит при охлаждении или обработке местными анестетиками этой по верхности продолговатого мозга.

Хеморецепторы расположены в тонком слое мозгового вещества на глубине не более 0,2 мм. Обнаружены два рецептивных поля, обозначаемые буквам М и L. Между ними находится небольшое поле S. Оно нечувствительно к концентрации ионов Н+, но при его разрушении исчезают эффекты возбуждения полей М и L.

Вероятно, здесь проходят афферентные пути от сосудистых хеморецепторов к дыхательному центру. В обычных условиях рецепторы продолговатого мозга постоянно стимулируются ионами Н+, находящимися в спинномозговой жидкости. Концентрация Н+ в ней зависит от напряжения двуокиси углерода в артериальной крови, она увеличивается при гиперкапнии.

Центральные хеморецепторы оказывают более сильное влияние на деятельность дыхательного центра, чем периферические. Они существенно изменяют вентиляцию легких. Так, снижение рН спинномозговой жидкости на 0,01 сопровождается увеличением вентиляции легких на 4 л/мин.

Вместе с тем центральные хеморецепторы реагируют на изменение напряжения двуокиси углерода в артериальной крови позже (через 20--30 с), чем периферические хеморецепторы (через 3--5 с). Указанная особенность обусловлена тем, что для диффузии стимулирующих факторов из крови в спинномозговую жидкость и далее в ткань мозга необходимо время.

Сигналы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности дыхательного центра и соответствия вентиляции легких газовому составу крови. Импульсы от центральных хеморецепторов усиливают возбуждение как инспираторных, так и экспираторных нейронов дыхательного центра продолговатого мозга.

Роль механорецепторов в регуляции дыхания Рефлексы Геринга и Брейера. Смене дыхательных фаз, т. е. периодической деятельности дыхательного центра, способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов. После перерезки блуждающих нервов, выключающей эти импульсы, дыхание у животных становится более редким и глубоким. При вдохе инспираторная активность продолжает нарастать с прежнейскоростью до нового, более высокого уровня. Значит афферентные сигналы, поступающие от легких, обеспечивают смену вдоха на выдох раньше, чем это делает дыхательный центр, лишенный обратной связи с легкими. После перерезки блуждающих нервов удлиняется и фаза выдоха. Отсюда следует, что импульсы от рецепторов легких способствуют и смене выдоха вдохом, укорачивая фазу экспирации.

Геринг и Брейер (1868) сильные и постоянные дыхательные рефлексы обнаружили при изменениях объема легких. Увеличение объема легких вызывает три рефлекторных эффекта. Во-первых, раздувание легких при вдохе может его преждевременно прекратить (инспираторно-тормозящий рефлекс). Во-вторых, раздувание легких при выдохе задерживает наступление следующего вдоха, удлиняя фазу экспирации (экспираторно-облегчающий рефлекс).

В-третьих, достаточно сильное раздувание легких вызывает короткое (0,1--0,5 с) сильное возбуждение инспираторных мышц, возникает судорожный вдох -«вздох» (парадоксальный эффект Хэда).

Уменьшение объема легких обусловливает усиление инспираторной активности и укорочение выдоха, т. е. способствует наступлению следующего вдоха (рефлекс на спадение легких).

Таким образом, деятельность дыхательного центра зависит от изменений объема легких. Рефлексы Геринга и Брейера обеспечивают так называемую объемную обратную связь дыхательного центра с исполнительным аппаратом дыхательной системы.

Значение рефлексов Геринга и Брейера состоит в регулировании сортношения глубины и частоты дыхания в зависимости от состояния легких. При сохраненных блуждающих нервах гиперпноэ, вызываемое гиперкапнией или гипоксией, проявляется увеличением как глубины, так и частоты дыхания. После выключения блуждающих нервов учащения дыхания не происходит, вентиляция легких постепенно растет только вследствие увеличения глубины дыхания.

В результате максимальная величина вентиляции легких оказывается сниженной приблизительно вдвое. Таким образом, сигналы от рецепторов легких обеспечивают повышение частоты дыхания при гиперпноэ, наступающем при гиперкапнии и гипоксии.

У взрослого человека в отличие от животных значение рефлексов Геринга и Брейера в регуляции спокойного дыхания невелико. Временная блокада блуждающих нервов местными анестетиками не сопровождается существенным изменением частоты и глубины дыхания. Однако увеличение частоты дыхания при гиперпноэ у человека, как и животных, обеспечивается рефлексами Геринга и Брейера: это увеличение выключается блокадой блуждающих нервов.

Рефлексы Геринга и Брейера хорошо выражены у новорожденных. Эти рефлексы играют важную роль в укорочении дыхательных фаз, в особенности выдохов. Величина рефлексов Геринга и Брейера уменьшается в первые дни и недели после рождения.

В легких имеются многочисленные окончания афферентных нервных волокон. Известны три группы рецепторов легких: рецепторы растяжения легких, ирритантные рецепторы и юкстаальвеолярные рецепторы капилляров (j-рецепторы). Специализированные хеморецепторы для двуокиси углерода и кислорода отсутствуют.

Рецепторы растяжения легких. Возбуждение этих рецепторов возникает или усиливается при возрастании объема легких. Частота потенциалов действия в аффе рентных волокнах рецепторов растяжения увеличивается при вдохе и снижается при выдохе. Чем глубже вдох, тем больше частота импульсов, посылаемых рецепторами растяжения вдыхательный центр. Рецепторы растяжения легких обладают разными порогами. Приблизительно половина рецепторов возбуждена и при выдохе, в некоторых из них редкие импульсы возникают даже при полном спадении легких, однако при вдохе частота импульсов в них резко увеличивается (низкопороговые рецепторы). Другие рецепторы возбуждаются только при вдохе, когда объем легких увеличивается сверх функциональ ной остаточной емкости (высокопороговые рецепторы).

При длительном, на многие секунды, увеличении объема легких частота разрядов рецепторов убывает очень медленно (рецепторам свойственна медленная адаптация). Частота разрядов рецепторов растяжения легких уменьшается при увеличении содержания двуокиси углерода в про свете воздухоносных путей.

В каждом легком около 1000 рецепторов растяжения. Они расположены преимущественно в гладких мышцах стенок воздухоноеных путей -- от трахеи до мелких бронхов. В альвеолах и плевре таких рецепторов нет.

Увеличение объема легких стимулирует рецепторы растяжения косвенно. Непосредственным их раздражителем является внутреннее напряжение стенки воздухоносных путей, зависящее от разности давлений по обе стороны их стенки. С увеличением объема легких возрастает эластическая тяга легких. Стремящиеся спадаться альвеолы растягивают стенки бронхов в радиальном направлении. Поэтому возбуждение рецепторов растяжения зависит не только от объема легких, но и от эластических свойств легочной ткани, от ее растяжимости.

Возбуждение рецепторов внелегочных воздухоносных путей (трахеи и крупных бронхов), находящихся в грудной полости, определяется в основном отрицательным давлением в плевральной полости, хотя и зависит также от степени сокращения гладкой мускулатуры их стенок.

Раздражение рецепторов растяжения легких вызывает инспираторно-тормозящии рефлекс Геринга и Брейера. Большая часть афферентных волокон от рецепторов растяжения легких направляется в дорсальное дыхательное ядро продолговатого мозга, активность инспираторных нейронов которого изменяется неодинаково. Около 60% инспираторных нейронов в этих условиях тормозится. Они ведут себя в соответствии с проявлением инспираторно-тормозящего рефлекса Геринга и Брейера. Такие нейроны обозначаются как Iб. Остальные инспираторные нейроны при раздражении рецепторов растяжения, наоборот, возбуждаются (нейроны Iв). Вероятно, нейроны Iв представляют собой промежуточную инстанцию, через которую осуществляется торможение нейронов Iб и инспираторной активности в целом. Предполагают, что они входят в состав механизма выключения вдоха.

Изменения дыхания зависят от частоты раздражения афферентных волокон рецепторов растяжения легких. Инспираторно-тормозящии и экспираторно-облегчающий рефлексы возникают только при относительно высоких (более 60 в 1 с) частотах электростимуляции. Электростимуляция этих волокон низкими частотами (20--40 в 1 с), наоборот, вызывает удлинение вдохов и укорочение выдохов. Вероятно, относительно редкие разряды рецепторов растяжения легких на выдохе способствуют наступлению следующего вдоха. Ирритантные рецепторы и их влияние на дыхательный центр Названные так рецепторы располагаются преимущественно в эпителии и субэпителиальном слое всех воздухоносных путей. Особенно много их в области корней легких.

Ирритантные рецепторы обладают одновременно свойствами механо- и хеморецепторов.

Они раздражаются при достаточно сильных изменениях объема легких, причем как при увеличении, так и при уменьшении. Пороги возбуждения ирритантных рецепторов выше, чем у большинства рецепторов растяжения легких.

Импульсы в афферентных волокнах ирритантных рецепторов возникают только на короткое время в форме вспышек, во время изменения объема (проявление быстрой адаптации). Поэтому иначе их называют быстро адаптирующимися механорецепторами легких. Часть ирритантных рецепторов возбуждается при обычных вдохах и выдохах. Ирритантные рецепторы стимулируются также пылевыми частицами и накапливающейся в воздухоносных путях слизью.

Кроме того, раздражителями ирритантных рецепторов могут служить пары едких веществ (аммиак, эфир, двуокись серы, табачный дым), а также некоторые биологически активные вещества, образующиеся в стенках воздухоносных путей, в особенности гистамин. Раздражению ирритантных рецепторов способствует снижение растяжимости легочной ткани. Сильное возбуждение ирритантных рецепторов происходит при ряде заболеваний (бронхиальная астма, отек легких, пневмоторакс, застой крови в малом круге кровообращения) и обусловливает.характерную одышку. Раздражение ирритантных рецепторов вызывает у человека,.;неприятные ощущения типа першения и жжения. При раздражении ирритантных рецепторов трахеи возникает кашель, а если раздражаются такие же рецепторы бронхов, усиливается инспираторная активность и укорачиваются выдохи за счет более раннего наступления следующего вдоха. В результате возрастает частота дыхания. Ирритантные рецепторы участвуют также в формировании рефлекса на спадение легких, их импульсы вызывают рефлекторное сужение бронхов (бронхоконстрикция). Раздражение ирритантных рецепторов обусловливает фазное инспираторное возбуждение дыхательного центра в ответ на раздувание легких. Значение этого рефлекса заключается в следующем. Спокойно дышащий человек периодически (в среднем 3 раза в час) глубоко вздыхает. Ко времени наступления такого «вздоха» нарушается равномерность вентиляции легких, снижается их растяжимость. Это способствует раздражению ирритантных рецепторов. На один из очередных вдохов наслаивается «вздох». Это ведет к расправлению легких и восстановлению равномерности их вентиляции.