Какие свойства характерны для ванадия. Ванадий: свойства, атомная масса, формула, применение

Ванадий - химический элемент периодической системы Менделеева, которому присвоен 23 атомный номер. Данный элемент является редким представителем черных металлов. Его открытие в истории произошло дважды. Первооткрывателем был А.М. Дель Рио из Мексики, обнаруживший металл в составе руд бурого цвета, которые приобретали красноватый окрас при воздействии на них температурами. Однако, официальным открывателем ванадия считается шведский химик Н.Г. Сефстрем. Он обнаружил данный металл в ходе исследования местной железной руды, в результате чего получил вещество и назвал его Ванадий, отождествляя с древнегреческой богиней красоты Ванадис.

Свойства ванадия

Ванадий в чистом виде имеет светло-серый окрас. Его вес в полтора раза меньше веса железа. В условиях комнатных температур при относительно низкой влажности ванадий пассивен химически, однако при воздействии на него более высокими температурами легко соединяется с кислородом, азотом и другими элементами. Ванадий обладает высокой пластичностью и плотностью, составляющей 6,11 г/см 3 . Однако, стоит отметить, что его пластичность значительно снижается при наличии примесей кислорода, водорода и азота, что делает металл более твердым и хрупким. Также приобретает повышенную хрупкость под воздействием температуры, превышающей 300 0 С. Имеет кубическую объемноцентрированную кристаллическую решетку А=3,024А, z=2 и пространственную группу Im3m. Легко плавится при температуре 1920 0 С и закипает при 3400 0 С.

Химический ванадий имеет устойчивость к воздействию на него морской воды, а также разбавленными растворами различных кислот (соляной, азотной, серной) и щелочей.

Результатом взаимодействия ванадия с кислородом является образования нескольких оксидов: VO, V 2 O 3 , VO 2 ,V 2 O 5 . Взаимодействие последнего оксида и основных оксидов приводит образованию солей ванадиевой кислоты вероятного состава HVO 3 .

Ванадий благодаря своим характеристикам нашел широкое применение во многих сферах человеческой деятельности. Однако, основной сферой его использования является металлургическая промышленость. Именно ванадий выступает главным компонентом при изготовлении марочных чугунов и сталей. Кроме этого, ванадий является неотъемлемым компонентом химической промышленности, сельскохозяйственной деятельности, а также текстильной, лакокрасочной, резиновой, керамической, стекольной, фото и кинопромышленности. Также используется в аэрокосмической промышленности как легирующий компонент для титановых сплавов с целью улучшения их характеристик.

При работе с ванадием необходимо быть очень внимательным и предельно остнорожным. Это связано с тем, что соединения ванадия отличаются своими ядовитыми свойствами, способными вызвать острое отравление организма просто при вдыхании пыли, в которой содержатся частички ванадия. Как результат могут возникнуть кровотечение, головокружение, нарушение сердечного ритма и работы почек.

Таблица 1. Свойства ванадия
Характеристика Значение
Свойства атома
Название, символ, номер Вана́дий / Vanadium (V), 23
Атомная масса (молярная масса) 50,9415(1) а. е. м. (г/моль)
Электронная конфигурация 3d3 4s2
Радиус атома 134 пм
Химические свойства
Ковалентный радиус 122 пм
Радиус иона (+5e)59 (+3e)74 пм
Электроотрицательность 1,63 (шкала Полинга)
Электродный потенциал 0
Степени окисления 5, 4, 3, 2, 0
Энергия ионизации (первый электрон) 650,1 (6,74) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 6,11 г/см³
Температура плавления 2160 К (1887 °C)
Температура кипения 3650 К (3377 °C)
Уд. теплота плавления 17,5 кДж/моль
Уд. теплота испарения 460 кДж/моль
Молярная теплоёмкость 24,95 Дж/(K·моль)
Молярный объём 8,35 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 3,024 Å
Температура Дебая 390 K
Прочие характеристики
Теплопроводность (300 K) 30,7 Вт/(м·К)
Номер CAS 7440-62-2

Получение ванадия

В природе ванадий встречается исключительно в рассеянном состоянии. Его концентрация в земной коре составляет 1,6*10 -2 % по массе. Также может находиться в океанических водах, где его содержание достигает 3*10 -7 %. Также некоторое количество ванадия могут содержать в своем составе титаномагнетитовые руды, фосфоритовые, урансодержащие песчаники и алевролиты, в которых максимальное его содержание составляет 2%. К основным рудным минералам ванадия в подобных месторождениях относят карнотит и ванадиевый мусковит-роскоэлит. Кроме этого, было обнаружено, что бокситы, тяжелые нефти, бурые угли, битуминозные сланцы и пески также могут быть носителями ванадия. Однако, максимально средние значения концентрации ванадия фиксируются именно в магматических породах (габбро и базальтах).

Среди наиболее важных минералов следует выделить такие, как патронит V(S 2) 2 , ванадинит Pb 5 (VO 4) 3 Cl.

Основным сырьем для получения ванадия является ванадиевая руда. Однако, также существуют и другие промышленные источники получения металла, к которым относятся железные руды, титаномагнетитовые руды, а также медно-свинцово-цинковые. Указанные минералы выше наряду с урановым сырьем и горючими сланцами выступают в качестве дополнительных источников ванадия. Если ванадий получают из горючих сланцев или уранового материала, то он является побочным продуктом, который выделяется во время переработки основного сырья.

Производство ванадия осуществляют несколькими способами, связанными с окислением металла:

  1. Путем выщелачивания руды, с помощью водных растворов или кислот. Данный способ заключается в предварительном отжиге исходного сырья, затем в выщелачивании основой или кислотной седой и выделении гидратированного оксида ванадия из растворов. На последней стадии используют гидролиз.
  2. Плавкой в домне железных или других ванадийсодержащих руд. Суть данного способа состоит в переходе металла в чугун. Неотъемлемой частью процесса переработки металла является образование шлаков, в которых содержится порядка 16% пентоксида ванадия. Пятиокись выделяется двумя этапами: обжигом шлаков с поваренной солью и выщелачиванием. В результате этого на выходе получается продукт V 2 O 5 , который является основным сырьем для выделения металлического ванадия и его сплавов с железом. Для феррованадия характерно различное наличие металла в соединении - его концентрация может варьироваться в пределах 35-70%.

Всего в мире ванадиевых залежей насчитывается порядка 60 млн тонн, из которых 90% локализируется на территории пяти государств: России, ЮАР, Венесуэле, США и Китае. Именно там добывается порядка 50-60 тыс. тонн металла. Существуют определенные месторождения, которые выделяются в особую группу. В таких месторождениях сконцентрированы запасы ванадия, объем которых более 1 млн тонн. К ним относятся Качканарская группа, расположенная на Урале (Россия), а также Бушвельдский комплекс на территории ЮАР.

Таблица 2. Мировые запасы ванадия, т.
Страна Подтвержденные запасы Разведанные запасы Доля в мировых подтвержденных запасах
Китай 5 000 000 14 000 000 38%
Россия 5 000 000 7 000 000 38%
ЮАР 3 000 000 12 000 000 23%
США 45 000 4 000 000 0,3%
Прочие - 1 000 000 -
Всего 13 045 000 38 000 000 100%

Ванадиевая сталь

Такое название имеет сталь, свойства которой были улучшены путем добавления ванадия. Первое применение такой стали было осуществлено во Франции в 19 веке. Ванадий имеет особое влияние на сталь и ее свойства, которые приобретаются в результате карбидо- и нитридообразования. Стоит отметить, что металл выступает сильным карбидообразующим элементом, в связи с чем при взаимодействии с углеродом стали образует карбид ванадия, а в результате реакции с азотом получается карбонитрид ванадия или его нитрид.

Стоит отметить, что путем легирования стали ванадием можно получить мелкозернистую структуру, существенно снизить склонность к перегреву, а также повысить устойчивость к износу и разного рода механическим повреждениям. Ванадиевая сталь имеет отличные литейные и сварочные свойства, чего нельзя сказать об углеродной стали. Благодаря этому, она нашла широкое применение во многих областях человеческой деятельности.

ВАНАДИЙ (Vanadium), V (а. vanadium; н. Vanadin; ф. vanadium; и. vanadio), — химический элемент V группы периодической системы Менделеева, атомный номер 23, атомная масса 50,94. В природе известны два стабильных изотопа ванадия 50 V (0,25%) и 51 V (99,75%). Открыт мексиканским минерологом А. М. дель Рио в 1801.

Получение и применение ванадия

Металлический ванадий (95-99% V) получают карбо-, кальцие- и магниетермическим восстановлением технической V 2 О 5 или термической диссоциацией иодида ванадия. Для получения ванадия высокой чистоты применяется его рафинирование: электролиз расплавленных галогенидов ванадия, простая и зонная индукционная, дуговая и электроннолучевая плавка в вакууме. Около 90% ванадия потребляет чёрная металлургия, где он используется в качестве легирующей добавки к стали и чугуну. На основе ванадия создаются также различные сплавы, которые наряду с металлическим ванадием применяются как конструкционный материал в ядерных реакторах, а сплавы на основе Ti с присадками ванадия — в авиационной и ракетной технике. В химической промышленности соединения ванадия используются как катализаторы при контактном производстве серной кислоты; применяются в лакокрасочном, резиновом, текстильном, керамическом и других производствах.

Общие сведения и методы получения

Ванадий (V) - металл серо-стального цвета.

Открыт в 1801 г. мексиканским минералогом А. М. дель Рио в свин­цовой руде Самапанского месторождения. Позднее в 1830 г. шведский химик Сефстрем, анализируя пробы железной руды месторождения Та-борг, обнаружил в них новый элемент. Ои и дал ему название- по име­ни легендарной северной богини красоты Ванадис.

Металлический порошок ванадия серебристо-белого цвета путем вос­становления VC1 2 водородом впервые получил английский химик Роско в 1869 г. Пластичный ковкнй ванадий получен лишь в 1927 г. Морде-ном н Ричем путем восстановления оксида ванадия (V) кальцием.

Промышленное значение металл приобрел лишь в начале XX в. Ис­пользование его в металлургическом производстве в нашей стране в ви­де феррованадия началось с 1936 г.

Содержание ванадия в земной коре 1,5*10 -2 % (по массе). Ванадие­вые руды очень редки. Ванадий, как правило, находится в полиметал­лических рудах других металлов, в частности свинцовых, свинцово-медных и свинцово-цинковых, а также в железных рудах, обычно пред­ставляющих собой титаномагнетиты. В некоторых магматических рудах концентрация ванадия достигает 1 % V2O5.

Известно более 65 минералов, содержащих ванадий, из которых про­мышленное значение имеют: патронит, карнотит, роскоэлит, моттрамит, дуклуазит, ванадинит.

Из ванадийсодержащих руд (или их концентратов) ванадий извле­кают либо непосредственным выщелачиванием растворами кислот и щелочей, либо выщелачиванием продукта окислительного обжига (в сме­си с поваренной солью) водой или разбавленными кислотами. Из раст­воров путем гидролиза выделяют оксид ванадия (V) V 2 0 5 который используют для выплавки феррованадия, а также производства метал­лического ванадия.

Металлический ванадий получают либо непосредственным восста­новлением оксида (V), либо в две стадии, т.е. сначала восстанавлива­ют оксиды (V) до низшего оксида с использованием одного восстано­вителя, а затем низший оксид - до металла другим восстановителем.

Разработан ряд методов получения металлического ванадия: каль-цнетермический, при котором ковкий ванадий получают методом восста­новления оксидов ванадия кальцием; алюминотермический, когда основ­ным восстановителем металла является алюминий; метод вакуумного углетермического восстановления оксидов ванадия (использование уг­лерода наиболее перспективно); хлоридный, при котором хлорид вана­дия (VC1 3) восстанавливается жидким магнием.

Существует также иодидный метод, заключающийся в диссоциации иодида (VI 2) и обеспечивающий получение ванадия наиболее высокой чистоты, однако этот метод пока может быть использован лишь для получения небольших количеств высокочистого металла.

Каждый из рассмотренных методов имеет свои преимущества и не­достатки, поэтому выбор того или иного метода определяется задача­ми в отношении качества конечного продукта, а также экономическими соображениями и возможностями осуществления самого процесса.

Физические свойства

Атомные характеристики. Атомный номер 23, атомная масса 50,942 а. е. м., атомный объем 8,35■ 10~ 6 м 3 /моль. Атомный радиус 0,134 нм, ионный радиус V 2+ 0,072 нм, V 3 + 0,067 нм, V 4 + 0,061 им, V 5 + 0,04 нм. Конфигурация внешних электронных оболочек 3d 3 4s 2 . Электроотрица-тельиость 1,6.

Химические свойства

В соединениях проявляет степень окисления от +2 до +5, наиболее стойки и типичны соединения со степенью окисления +5.

Ванадий обладает высокой химической стойкостью в воде, водных растворах минеральных солей, разбавленной соляной кислоте и в рас­творах щелочей. На холоду на него действуют разбавленные азотная и серная кислоты. Плавиковая кислота, концентрированные азотная и серная кислоты, царская водка растворяют ванадий.

Ванадий достаточно устойчив на воздухе при температурах, не превышающих 300 °С. Взаимодействия его с азотом, кислородом и во­дородом усиливаются при 600-700 °С.

Оксид ванадия (IV) V 2 0 4 получают при слабом нагревании V2O5 с углем, сплавлением V 2 0 5 со щавелевой кислотой, медленным окисле­нием па воздухе V 2 0 3 . Оксид V 2 0 4 амфотерен; при растворении V 2 0 4 и его гидратов в неокисляющнх кислотах образуются растворы солей ванадия, при растворении V 2 0 4 в щелочах - растворы солей тетрава-надистой кислоты.

Оксид ванадия (V) V 2 0 5 получают нагреванием метаванадата ам­мония на воздухе, гидролизом VOCl 3 , нагреванием на воздухе или в кислороде порошкообразного ванадия, низших его оксидов и карбида. V 2 05 имеет две модификации: аморфную и кристаллическую. Водные растворы V 2 0 5 имеют кислую реакцию, реатруя со щелочами, дают соли.

С фтором ванадий образует фториды VF, VF 4 , VF 5 , VF 3 -3H 2 0.

Трифторид ванадия VF 3 получают взаимодействием HF с VC1 3 при температуре темно-красного каления Если упаривать раствор V 2 0 3 во фтористоводородной кислоте, выделяется VF 3 -3H 2 0.

Тетрафторид ванадия VF 4 получают взаимодействием сухого фто­ристого водорода с VC1 4 .

Известны хлориды ванадия- VCI 2 , VC1 3 , VCI 4 , VOCl, V0C1 3 . Дихло-рид VCl 2 получают путем пропускания паров VC1 4 и Н 2 через стеклян­ную трубку, нагретую до темно-красного каления, или действием газо­образного НС1 на феррованадий. VC1 2 - сильный восстановитель, вы­деляет металлы из растворов солей золота, серебра, платины.

Трихлорид VCI 3 получают при нагревании VCl 4 ; фиолетово-красиые кристаллы VC1 3 , хорошо растворимые в воде.

Тетрахлорид VCI 4 получают хлорированием феррованадия хлором прн 150-200 °С.

Оксихлорид ванадия V0C1 - кристаллическое вещество, получаемое нагреванием VC1 4 в атмосфере С0 2 при ~700°С или восстановлением VOCI3 водородом при температуре красного каления.

Окситрихлорид ванадия VOCI 3 получают нагреванием V 2 0 5 и токе С1 2 при -600 °С.

Дииодид ванадия VI 2 получают синтезом; он не растворяется в аб­солютном спирте, бензоле, тетрахлориде углерода, сероуглероде; на воз­духе частично окисляется.

Трииодид ванадия VI 3 получают нагреванием смеси элементов при 300 °С; он растворяется в воде, в абсолютном спирте, не растворяется в бензоле, тетрахлориде углерода, сероуглероде.

Известны три сульфида ванадия. VS, V 2 S 3 и V 2 S 5 .

Сульфид ванадия VS получают нагреванием V 2 S в среде водорода при 850-1100 "С или сплавлением V 2 0 5 с серой при 400 °С в атмосфере С0 2 VS легко окисляется на воздухе, легко взаимодействует с HN0 3 .

Диванадийтрисульфид V 2 S 3 получают, воздействуя CS 2 на V 2 0 5 при 700 °С, пентасульфид ванадия V 2 Ss - при нагревании на воздухе V 2 S 3 с избытком серы при 400 "С.

С азотом ванадий образует нитриды. VN 2 получается взаимодействи­ем aioia с порошком ванадия при 750-850 "С, окисляется во влажном воздухе, реагирует с горячей HN0 3 . VN отличается высокой химической стойкостью; HCI и H 2 S0 4 на пего не Действуют, HN0 3 его окисляет.

Ванадий растворяет водород, причем растворимость уменьшается с повышением температуры. Максимальное количество водорода, которое ванадий может удерживать при комнатной температуре ~4 % (ат.).

Ванадий является перспективным металлом для создания сплавов, работающих при температурах, более высоких, чем никелевые и кобаль­товые жаропрочные сплавы.

Наиболее распространенными легирующими добавками ванадиевых сплавов являются титан, ниобий, вольфрам, цирконий.

В системах ванадия с РЗМ наблюдаются широкие области расслое­ния в жидком и твердом состояниях, незначительная растворимость РЗМ в твердом ванадии.

Ванадий образует с 6-титаном непрерывный ряд твердых растворов, а с а-титаном - ограниченные твердые растворы; в системах с цирко­нием и гафнием имеются соединения ZrV 2 и HfV 2 .

Ниобий и тантал, расположенные с ванадием в одной подгруппе не­ограниченно в нем растворимы в жидком и твердом состояниях. Однако для этих систем характерен распад твердых растворов при низких тем­пературах.

Непрерывные ряды твердых растворов наблюдаются в системах ва­надия с хромом, молибденом и вольфрамом.

Электрохимический эквивалент ванадия 0,10560 мг/Кл.

Технологические свойства

Нелегированный ванадий - мягкий металл, легко поддающийся пласти­ческой деформации. Предельное суммарное содержание примесей азота и кислорода в ванадии, при котором сохраняется пластичность, позво­ляющая проводить обработку давлением, по мнению ряда исследовате­лей, составляет 0,2 %.

В процессе холодной пластической деформации наиболее значитель­ное упрочнение ванадия достигается при обжатии до 15 %. При более высоких обжатиях интенсивность упрочнения снижается.

Температура начала рекристаллизации ванадия высокой степени чистоты 700-800 °С При легировании ванадия тугоплавкими металла­ми (Nb, Hf, Ti и др.) температура рекристаллизации повышается до 980-1100 "С.

Температура ковки и прессования слитков 1000-1450 "С.

Горячую обработку давлением производят с нагревом в атмосфере аргона и других инертных газов. Для защиты от окисления и охруп-чивания ванадия газовыми примесями при нагреве используют также гальванические покрытия. Лучшие результаты получены прн покрытии никелем. Применяют также кремниевые покрытия.

Предварительно деформированные заготовки ванадия обрабатывают давлением в холодном состоянии (прокатка, волочение или другие ме­тоды).

Из пластичного ванадия в холодном состоянии без промежуточных отжигов можно изготовлять листы, прутки, тонкостенные трубы, про­волоку и т. п.

Добавки вольфрама и тантала снижают пластичность сплавов вана­дия. Наиболее пластичны сплавы систем V- Ti и V- Zr.

Из сплавов ванадия, содержащих 5-20 % Ti, можно получать лис­ты, прутки, трубы и другие изделия. Сплавы ванадия с содержанием до 40 % Ti и небольшими добавками других элементов наиболее перс­пективны. Добавка 0,5-1,0 % С к этим сплавам способствует измель­чению структуры и улучшению способности к деформированию ковкой.

У сплавов системы V- Zr пластичность повышается при содержании до 3 % Zr, но заметно снижается при более высоком содержании этого элемента. Добавка иттрия также улучшает пластичность ванадия.

Пластичность сплава с 1 % Si такая же, как и чистого ванадия Спла­вы V- Nb обладают малым запасом пластичности даже при очень вы­соких температурах.

Сварку ванадия плавлением можно производить электрической дугой в инертных газах- без присадочного материала, вольфрамовым электро­дом и электронным лучом в вакууме.

При сварке нелегированиого ванадия образуются пластичные соедч- нения, допускающие изгиб на 180° (при радиусе оправки, равном тол­щине свариваемых деталей); прочность сварных соединений, выполнен­ных без присадочного металла, равна прочности исходного материала.

Таким образом ванадий можно соединять с титаном, ниобием, тан­талом, хромом и медными сплавами, а также со сталями, содержащими не более 7-8 % Ni.

Нелегироваииый ванадий легко обрабатывается резанием, как медь.

Для получения хорошей поверхности рекомендуется в качестве смазки применять керосин и высокую скорость резания с небольшой по­дачей. Высоколегированный ванадий обычно обрабатывается значитель­но труднее, чем нелегированный, и в случае затруднений с удалением твердого поверхностного слоя режущим инструментом он должен быть удален шлифовкой.

Области применения

Основная область применения ванадия - черная металлургия, где его широко используют в виде феррованадия для получения сталей специ­ального назначения. При введении в сталь 0,15-0,25 °/о V резко повы­шаются ее прочность, вязкость, сопротивление усталости и износостой­кость. Ванадий - сильный раскислитель стали и карбидообразующий элемент, способствующий измельчению структуры стали и чугуна, а так­же замедлению роста зерна при нагреве.

Ванадий используется также в производстве сплавов на основе ти­тана и на основе других тугоплавких металлов, предиазиачениых для новой техники (авиационной, ракетной, ядерной энергетики). В частно­сти, для.реакторостроеиня ванадий представляет особый интерес, по­скольку обладает малым эффективным поперечным сечением захвата нейтронов и одновременно обладает достаточно высокими свойствами при повышенных температурах.

Ванадий применяют как промежуточный материал (прослойка) при плакировании стали и тугоплавких металлов титановыми, циркониевы­ми сплавами, а также сплавами благородных металлов.

Благодаря высокой коррозионной стойкости в агрессивных химиче­ских средах ванадий является перспективным материалом для химиче­ского машиностроения и др.

Чистый металлический ванадий используют, кроме того, в производ­стве электронных приборов, отдельных деталей рентгеновской аппара­туры и т. д.

Ванадий служит основой сверхпроводящих сплавов и других спла­вов со специальными свойствами.

Соединения ванадия находят применение во многих областях про­мышленности, в частности в химической - как катализаторы, в текс­тильной, лакокрасочной, резиновой, керамической, стекольной, в сель­ском хозяйстве, медицине и др

ОПРЕДЕЛЕНИЕ

Ванадий - двадцать третий элемент Периодической таблицы. Обозначение - V от латинского «vanadium». Расположен в четвертом периоде, VB группе. Относится к металлам. Заряд ядра равен 23.

Соединения ванадия широко распространены в природе, но они очень распылены и не образуют сколько-нибудь значительных скоплений; общее содержание ванадия в земной коре оценивается в 0,0015% (масс.).

Чистый ванадий - серебристый металл (рис. 1) ковкий металл, плотностью 5,96 г/см 3 , плавящийся при температуре 1900 o С. Как и у титана, механические свойства ванадия резко ухудшаются при наличии в нем примесей кислорода, азота, водорода.

Рис. 1. Ванадий. Внешний вид.

Атомная и молекулярная масса ванадия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кальций существует в виде одноатомных молекул V, значения его атомной и молекулярной масс совпадают. Они равны 50,9962.

Изотопы ванадия

Известно, что в природе ванадий может находиться в виде единственного стабильного изотопа 51 V. Массовое число равно 51, ядро атома содержит двадцать три протона и двадцать восемь нейтронов.

Существуют искусственные изотопы ванадия с массовыми числами от 40-ка до 65-ти, среди которых наиболее стабильным является 50 V с периодом полураспада равным 1,5×10 17 лет, а также пять ядерных изотопов.

Ионы ванадия

На внешнем энергетическом уровне атома ванадия имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 2 4s 2 .

В результате химического взаимодействия ванадий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

V o -2e → V 2+ ;

V o -3e → V 3+ ;

V o -4e → V 4+ ;

V o -5e → V 5+ .

Молекула и атом ванадия

В свободном состоянии ванадий существует в виде одноатомных молекул V. Приведем некоторые свойства, характеризующие атом и молекулу ванадия:

Сплавы ванадия

Ванадий в основном используют в качестве добавки к сталям. Сталь, содержащая всего 0,1 - 0,3% ванадия отличается большой прочностью, упругостью и нечувствительностью к толчкам и ударам, что особенно важно, например, для автомобильных осей, которые все время подвергаются сотрясению. Как правило, ванадий вводят в сталь в комбинации с другими легирующими элементами: хромом, никелем, вольфрамом, молибденом.

Примеры решения задач

ПРИМЕР 1

Ванадий

Ванадий — элемент побочной подгруппы пятой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 23. Обозначается символом V (лат. Vanadium ). Простое вещество ванадий — пластичный металл серебристо-серого цвета.

  1. История открытия

Впервые ванадий был фактически открыт в 1781 г. профессором минералогии из Мехико, Андресом Мануэлем Дель Рио в свинцовых рудах. Он обнаружил новый металл и предложил для него название «панхромий» из-за широкого диапазона цвета его соединений, сменив затем на «эритроний». Дель Рио не имел авторитета в научном мире Европы, и европейские химики усомнились в его результатах. Затем и сам Дель Рио потерял уверенность в своём открытии и заявил, что открыл всего лишь хромат свинца.

В 1830 году ванадий был открыт заново шведским химиком Нильсом Сефстрёмом в железной руде. Новому элементу название дали Берцелиус и Сефстрём.

Шанс открыть ванадий был у Фридриха Вёлера, исследовавшего мексиканскую руду, но он незадолго до открытия Сефстрёма серьёзно отравился фтороводородом и не смог продолжить исследования. Однако Вёлер довёл до конца исследование руды и окончательно доказал, что в ней содержится именно ванадий, а не хром.

  1. Нахождение в природе

Ванадий относится к рассеянным элементам и в природе в свободном виде не встречается. Содержание ванадия в земной коре 1,6×10 −2 % по массе, в воде океанов 3×10 −7 %. Наиболее высокие средние содержания ванадия в магматических породах отмечаются в габбро и базальтах (230—290г/т). В осадочных породах значительное накопление ванадия происходит в биолитах (асфальтитах, углях, битуминозных фосфатах), битуминозных сланцах, бокситах, а также в оолитовых и кремнисто-железных рудах. Близость ионных радиусов ванадия и широко распространённых в магматических породах железа и титана приводит к тому, что ванадий в гипогенных процессах целиком находится в рассеянном состоянии и не образует собственных минералов. Его носителями являются многочисленные минералы титана (титаномагнетит, сфен, рутил, ильменит), слюды, пироксены и гранаты, обладающие повышенной изоморфной ёмкостью по отношению к ванадию. Важнейшие минералы: патронит V(S 2) 2 , ванадинит Pb 5 (VO 4) 3 Cl и некоторые другие. Основной источник получения ванадия — железные руды, содержащие ванадий как примесь.

Месторождения

Известны месторождения в Перу, Колорадо, США, ЮАР, Финляндии, Австралии, Армении, России.

  1. Получение Ванадия

В промышленности при получении ванадия из железных руд с его примесью сначала готовят концентрат, в котором содержание ванадия достигает 8-16 %. Далее окислительной обработкой ванадий переводят в высшую степень окисления +5 и отделяют легко растворимый в воде ванадат натрия (Na) NaVO 3 . При подкислении раствора серной кислотой выпадает осадок, который после высушивания содержит более 90 % ванадия.

Первичный концентрат восстанавливают в доменных печах и получают концентрат ванадия, который далее используют при выплавке сплава ванадия и железа — так называемого феррованадия (содержит от 35 до 80 % ванадия). Металлический ванадий можно приготовить восстановлением хлорида ванадия водородом (H), кальцийтермическим восстановлением оксидов ванадия (V 2 O 5 или V 2 O 3), термической диссоциацией VI 2 и другими методами

  1. Физические свойства

Ванадий — пластичный металл серебристо-серого цвета, по внешнему виду похож на сталь. Кристаллическая решётка кубическая объёмно-центрированная, a=3,024 Å, z=2, пространственная группа Im3m . Температура плавления 1920 °C, температура кипения 3400 °C, плотность 6,11 г/см³. При нагревании на воздухе выше 300 °C ванадий становится хрупким. Примеси кислорода, водорода и азота резко снижают пластичность ванадия и повышают его твёрдость и хрупкость.

  1. Химические свойства

Химически ванадий довольно инертен. Он стоек к действию морской воды, разбавленных растворов соляной, азотной и серной кислот, щелочей.

С кислородом ванадий образует несколько оксидов: VO, V 2 O 3 , VO 2 ,V 2 O 5 . Оранжевый V 2 O 5 — кислотный оксид, темно-синий VO 2 — амфотерный, остальные оксиды ванадия — основные. Галогениды ванадия гидролизуются. С галогенами ванадий образует довольно летучие галогениды составов VX 2 (X = F, Cl, Br, I), VX 3 , VX 4 (X = F, Cl, Br), VF 5 и несколько оксогалогенидов (VOCl, VOCl 2 , VOF 3 и др.).

Соединения ванадия в степенях окисления +2 и +3 — сильные восстановители, в степени окисления +5 проявляют свойства окислителей. Известны тугоплавкий карбид ванадия VC (t пл =2800 °C), нитрид ванадия VN, сульфид ванадия V 2 S 5 , силицид ванадия V 3 Si и другие соединения ванадия.

При взаимодействии V 2 O 5 с основными оксидами образуются ванадаты — соли ванадиевой кислоты вероятного состава HVO 3 .

  1. Применение

80 % всего производимого ванадия находит применение в сплавах, в основном для нержавеющих и инструментальных сталей.

Ванадиевую сталь используют для обшивки корпусов судов. Возрастающая конкуренция в судостроении интенсифицирует внедрение сталей, позволяющих осуществлять скоростную сварку во влажной среде. Расширяется использование ванадия в производстве сплавов на основе титана и других тугоплавких металлов, предназначенных для новой техники (авиационной, ракетной, ядерной энергетики). Содержание ванадия в этих сплавах составляет 0,8-6,0 %. Ванадий в сочетании с алюминием используют с целью придания требуемой прочности в сплавах титана, идущего на создание специальных батисфер для исследования океана на глубине 10 000 м. Добавление ванадия в алюминиевые сплавы улучшает их жаропрочность и свариваемость.

Атомно-водородная энергетика:

Хлорид ванадия применяется при термохимическом разложении воды в атомно-водородной энергетике (ванадий-хлоридный цикл «Дженерал Моторс», США). В металлургии ванадий обозначается буквой Ф.

Химические источники тока:

Пентаоксид ванадия широко применяется в качестве положительного электрода (анода) в мощных литиевых батареях и аккумуляторах. Ванадат серебра в резервных батареях в качестве катода.

  1. Биологическая роль и воздействие

Установлено, что ванадий может тормозить синтез жирных кислот, подавлять образование холестерина. Ванадий ингибирует ряд ферментных систем, тормозит фосфорилирование и синтез АТФ, снижает уровень коферментов А и Q, стимулирует активность моноаминоксидазы и окислительное фосфорилирование. Известно также, что при шизофрении содержание ванадия в крови значительно повышается.

Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы; а также лейкопения и анемия, которые сопровождаются нарушениями основных биохимических параметров организма.

При введении ванадия животным (в дозах 25-50 мкг/кг), отмечается замедление роста, диарея и увеличение смертности.

Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Ванадий и его соединения токсичны. Токсическая доза для человека 0,25 мг, летальная доза — 2-4 мг.

Повышенное содержание белков и хрома в рационе снижает токсическое действие ванадия. Нормы потребления для этого минерального вещества не установлены.

Кроме того ванадий у некоторых организмов, например, у морских жителей дна голотурий и асцидий концентрируется в целомической жидкости/крови, причем его концентрации достигают 10 %! То есть эти животные являются биологическим концентратором ванадия. Его функция в организме голотурий до конца не ясна, разные ученые считают его отвечающим либо за перенос кислорода в организме этих животных, либо за перенос питательных веществ. С точки зрения практического использования — возможна добыча ванадия из этих организмов, экономическая окупаемость таких «морских плантаций» на данный момент не ясна, но в Японии имеются пробные варианты.

  1. Изотопы

Природный ванадий состоит из двух изотопов: слаборадиоактивного 50 V (изотопная распространённость 0,250 %) и стабильного 51 V (99,750 %). Период полураспада ванадия-50 равен 1,5×10 17 лет, т. е. для всех практических целей его можно считать стабильным; этот изотоп в 83 % случаев посредством электронного захвата превращается в 50 Ti, а в 17 % случаев испытывает бета-минус-распад, превращаясь в 50 Cr. Известны 24 искусственных радиоактивных изотопа ванадия с массовым числом от 40 до 65 (а также 5метастабильных состояний). Из них наиболее стабильны 49 V (T 1/2 =337 дней) и 48 V (T 1/2 =15,974 дня).

Литий

Литий (лат. Lithium ; обозначается символом Li) — элемент главной подгруппы первой группы, второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 3. Простое вещество литий — мягкий щелочной металл серебристо-белого цвета.

  1. История открытия

Литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li, Na), а затем в сподумене LiAl и в лепидолите KLi 1.5 Al 1.5 (F,OH) 2 . Металлический литий впервые получил Гемфри Дэви в 1825 году.

Своё название литий получил из-за того, что был обнаружен в «камнях» (греч. λίθος — камень). Первоначально назывался «литион», современное название было предложено Берцелиусом.

  1. Нахождение в природе

Геохимия лития:

Литий по геохимическим свойствам относится к крупноионным литофильным элементам, в числе которых калий, рубидий и цезий. Содержание лития в верхней континентальной коре составляет 21 г/т, в морской воде 0,17 мг/л.

Основные минералы лития — слюда лепидолит — KLi 1,5 Al 1,5 (F, OH) 2 и пироксен сподумен — LiAl . Когда литий не образует самостоятельных минералов, он изоморфно замещает калий в широко распространенных породообразующих минералах.

Месторождения лития приурочены к редкометалльным гранитным интрузиям, в связи с которыми развиваются литиеносные пегматиты или гидротермальные комплексные месторождения, содержащие также олово, вольфрам, висмут и другие металлы. Стоит особо отметить специфические породы онгониты — граниты с магматическим топазом, высоким содержанием фтора и воды, и исключительно высокими концентрациями различных редких элементов, в том числе и лития.

Другой тип месторождений лития — рассолы некоторых сильносоленых озёр.

Месторождения:

Месторождения лития известны в России, Аргентине, Мексике, Афганистане, Чили, США, Канаде, Бразилии, Испании, Швеции, Китае, Австралии, Зимбабве, Конго.

  1. Получение Лития

В настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO 3 (щелочной способ), или обрабатывают K 2 SO 4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li 2 CO 3 , который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl 2 (эти соли служат для понижения температуры плавления смеси).

2LiCl(ж) = 2Li + Cl2

В дальнейшем полученный литий очищают методом вакуумной дистилляции.

  1. Физические свойства

Литий — серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. Его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмно-центрированную решётку (координационное число 8), которая при холодной обработке переходит в кубическую плотноупакованную решётку, где каждый атом, имеющий двойную кубооктаэдрическую координацию, окружён 12 другими. Ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседей, расположенных в вершинах кубооктаэдра.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1340 °C, соответственно), у него самая низкая плотность при комнатной температуре среди всех металлов (0,533 г/см³, почти в два раза меньше плотности воды).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380° С и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

  1. Химические свойства

Литий является щелочным металлом, однако относительно устойчив на воздухе. Литий является наименее активным щелочным металлом, с сухим воздухом (и даже с сухим кислородом) при комнатной температуре практически не реагирует. По этой причине литий является единственным щелочным металлом, который не хранится в керосине (к тому же плотность лития столь мала, что он будет в нём плавать) и может непродолжительное время храниться на воздухе.

Во влажном воздухе медленно реагирует с азотом, находящимся в воздухе, превращаясь в нитрид Li 3 N, гидроксид LiOH и карбонат Li 2 CO 3 . В кислороде при нагревании горит, превращаясь в оксид Li 2 O. Есть интересная особенность, что в интервале температур от 100 °C до 300 °C литий покрывается плотной оксидной плёнкой, и в дальнейшем не окисляется.

В 1818 немецкий химик Леопольд Гмелин установил, что литий и его соли окрашивают пламя в карминово-красный цвет, это является качественным признаком для определения лития. Температура возгорания находится около 300 °C. Продукты горения раздражают слизистую оболочку носоглотки.

Спокойно, без взрыва и возгорания, реагирует с водой, образуя LiOH и H 2 . Реагирует также с этиловым спиртом (с образованием алкоголята), с водородом (при 500—700 °C) с образованием гидрида лития, с аммиаком и с галогенами (с иодом — только при нагревании). При 130 °C реагирует с серой с образованием сульфида. В вакууме при температуре выше 200 °C реагирует с углеродом (образуется ацетиленид). При 600—700 °C литий реагирует с кремнием с образованием силицида. Химически растворим в жидком аммиаке (-40 °C), образуется синий раствор.

Литий хранят в петролейном эфире, парафине, газолине и/или минеральном масле в герметически закрытых жестяных коробках. Металлический литий вызывает ожоги при попадании на кожу, слизистые оболочки и в глаза.

  1. Применение

Термоэлектрические материалы:

Сплав сульфида лития и сульфида меди — эффективный полупроводник для термоэлектропреобразователей (ЭДС около 530 мкВ/К).

Химические источники тока:

Из лития изготовляют аноды химических источников тока (аккумуляторов, например литий-хлорных аккумуляторов) и гальванических элементов с твёрдым электролитом (например, литий-хромсеребряный, литий-висмутатный, литий-окисномедный, литий-двуокисномарганцевый, литий-иодсвинцовый, литий-иодный, литий-тионилхлоридный, литий-оксидванадиевый, литий-фторомедный, литий-двуокисносерный элементы), работающих на основе неводных жидких и твёрдых электролитов (тетрагидрофуран,пропиленкарбонат, метилформиат, ацетонитрил).

Кобальтат лития и молибдат лития показали лучшие эксплуатационные свойства и энергоёмкость в качестве положительного электрода литиевых аккумуляторов.

Гидроксид лития используется как один из компонентов для приготовления электролита щелочных аккумуляторов. Добавление гидроксида лития к электролиту тяговых железо-никелевых, никель-кадмиевых, никель-цинковых аккумуляторных батарей повышает их срок службы в 3 раза и ёмкость на 21 % (за счёт образования никелатов лития).

Алюминат лития — наиболее эффективный твёрдый электролит (наряду с цезий-бета-глинозёмом).

Лазерные материалы:

Монокристаллы фторида лития используются для изготовления высокоэффективных (КПД 80 %) лазеров на центрах свободной окраски, и для изготовления оптики с широкой спектральной полосой пропускания.

Окислители:

Перхлорат лития используют в качестве окислителя.

Дефектоскопия:

Сульфат лития используют в дефектоскопии.

Пиротехника:

Нитрат лития используют в пиротехнике.

Сплавы:

Сплавы лития с серебром и золотом, а также медью являются очень эффективными припоями. Сплавы лития с магнием, скандием, медью, кадмием и алюминием — новые перспективные материалы в авиации и космонавтике. На основе алюмината и силиката лития создана керамика, затвердевающая при комнатной температуре и используемая в военной технике, металлургии, и, в перспективе, в термоядерной энергетике. Огромной прочностью обладает стекло на основе литий-алюминий-силиката, упрочняемого волокнами карбида кремния. Литий очень эффективно упрочняет сплавы свинца и придает им пластичность и стойкость против коррозии.

Электроника:

Триборат лития-цезия используется как оптический материал в радиоэлектронике. Кристаллические ниобат лития LiNbO 3 и танталат лития LiTaO 3 являются нелинейными оптическими материалами и широко применяются в нелинейной оптике, акустооптике и оптоэлектронике. Литий также используется при наполнении осветительных газоразрядных металлогалогеновых ламп.

Металлургия:

В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Литий иногда применяется для восстановления методами металлотермии редких металлов.

Металлургия алюминия:

Карбонат лития является важнейшим вспомогательным веществом (добавляется в электролит) при выплавке алюминия и его потребление растет с каждым годом пропорционально объёму мировой добычи алюминия (расход карбоната лития 2,5-3,5 кг на тонну выплавляемого алюминия).

Легирование алюминия:

Введение лития в систему легирования позволяет получить новые сплавы алюминия с высокой удельной прочностью.

Добавка лития снижает плотность сплава и повышает модуль упругости. При содержании лития до 1,8 % сплав имеет низкое сопротивление коррозии под напряжением, а при 1,9 % сплав не склонен к коррозионному растрескиванию. Увеличение содержания лития до 2,3 % способствует возрастанию вероятности образования рыхлот и трещин. Механические свойства при этом изменяются: пределы прочности и текучести возрастают, а пластические свойства снижаются.

Наиболее известны системы легирования Al-Mg-Li (пример — сплав 1420, применяемый для изготовления конструкций летательных аппаратов) и Al-Cu-Li (пример — сплав 1460, применяемый для изготовления емкостей для сжиженных газов).

Ядерная энергетика:

Изотопы 6 Li и 7 Li обладают разными ядерными свойствами (сечение поглощения тепловых нейтронов, продукты реакций) и сфера их применения различна. Гафниат лития входит в состав специальной эмали, предназначенной для захоронения высокоактивных ядерных отходов, содержащих плутоний.

Литий-6 (термояд):

Применяется в термоядерной энергетике.

При облучении нуклида 6 Li тепловыми нейтронами получается радиоактивный тритий 3 1 H (Т):

6 3 Li + 1 0 n = 3 1 H + 4 2 He.

Благодаря этому литий-6 может применяться как замена радиоактивного, нестабильного и неудобного в обращении трития как в военных (термоядерное оружие), так и в мирных (управляемый термоядерный синтез) целях. В термоядерном оружии обычно применяется дейтерид лития-6 6 LiD.

Перспективно также использование лития-6 для получения гелия-3 (через тритий) с целью дальнейшего использования в дейтерий-гелиевых термоядерных реакторах.

Литий-7 (теплоноситель):

Применяется в ядерных реакторах, использующих реакции с участием тяжёлых элементов, таких как уран, торий или плутоний.

Благодаря очень высокой удельной теплоёмкости и низкому сечению захвата тепловых нейтронов, жидкий литий-7 (часто в виде сплава с натрием или цезием-133) служит эффективным теплоносителем. Фторид лития-7 в сплаве с фторидом бериллия (66 % LiF + 34 % BeF 2) носит название «флайб» (FLiBe) и применяется как высокоэффективный теплоноситель и растворитель фторидов урана и тория в высокотемпературных жидкосолевых реакторах, и для производства трития.

Сушка газов:

Высокогигроскопичные бромид LiBr и хлорид лития LiCl применяются для осушения воздуха и других газов.

Медицина:

Соли лития обладают психотропным действием и используются в медицине при профилактике и лечении ряда психических заболеваний. Наиболее распространен в этом качестве карбонат лития. Применяется в психиатрии для стабилизации настроения людей, страдающих биполярным расстройством и частыми перепадами настроения. Он эффективен в предотвращении мании депрессии и уменьшает риск суицида. Медики не раз наблюдали, что некоторые соединения лития (в соответствующих дозах, разумеется) оказывают положительное влияние на больных, страдающих маниакальной депрессией. Объясняют этот эффект двояко. С одной стороны, установлено, что литий способен регулировать активность некоторых ферментов, участвующих в переносе из межклеточной жидкости в клетки мозга ионов натрия и калия. С другой стороны, замечено, что ионы лития непосредственно воздействуют на ионный баланс клетки. А от баланса натрия и калия зависит в значительной мере состояние больного: избыток натрия в клетках характерен для депрессивных пациентов, недостаток — для страдающих маниями. Выравнивая натрий калиевый баланс, соли лития оказывают положительное влияние и на тех, и на других. Лития никотинат (литиевая соль никотиновой кислоты, литонит) используется как неспецифическое средство для лечения больных алкоголизмом, препарат улучшает метаболические процессы и гемодинамику, уменьшает аффективные расстройства.

Смазочные материалы:

Стеарат лития («литиевое мыло») используется в качестве высокотемпературной смазки.

Регенерация кислорода в автономных аппаратах:

Гидроксид лития LiOH, пероксид Li 2 O 2 и супероксид LiO 2 применяются для очистки воздуха от углекислого газа; при этом последние два соединения реагируют с выделением кислорода (например, 4LiO 2 + 2CO 2 → 2Li 2 CO 3 + 3O 2), благодаря чему они используются в изолирующих противогазах, в патронах для очистки воздуха на подлодках, на пилотируемых космических аппаратах и т. д.

Силикатная промышленность:

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий.

Прочие области применения:

Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

  1. Изотопы лития

Природный литий состоит из двух стабильных изотопов: 6 Li (7,5 %) и 7 Li (92,5 %); в некоторых образцах лития изотопное соотношение может быть сильно нарушено вследствие природного или искусственного фракционирования изотопов. Это следует иметь в виду при точных химических опытах с использованием лития или его соединений. У лития известны 7 искусственных радиоактивных изотопов и два ядерных изомера (4 Li − 12 Li и 10m1 Li − 10m2 Li соответственно). Наиболее устойчивый из них, 8 Li, имеет период полураспада 0,8403 с. Экзотический изотоп 3 Li (трипротон), по-видимому, не существует как связанная система.

7 Li является одним из немногих изотопов, возникших при первичном нуклеосинтезе (то есть вскоре после Большого Взрыва). Образование элемента лития в звездах возможно по ядерной реакции «скалывания» более тяжелых элементов.

Заключение:

Оба, вышерассмотренные химические элементы являются неотъемлемой частью нашей жизни, так как хотя бы без одного из них невозможно существование какой-либо отрасли специализации.

Литий и Ванадий оба мало похожие друг на друга металлы, но каждый из них играет немалую роль в применении.

Список используемой литературы:

Для создания данной работы были использованы материалы с сайта:

  1. ru.wikipedia.org/wiki/Литий
  2. ru.wikipedia.org/wiki/Ванадий
  3. http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/LITI.html
  4. http://www.xumuk.ru/encyklopedia/2344.html
  5. http://chem100.ru/elem.php?n=3
  6. http://revolutionpedagogics/00228636.html

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ №19

РЕФЕРАТ ПО «ХИМИИИ»

ТЕМА: ВАНАДИЙ И ЛИТИЙ

Выполнил: студент

1 курса 1ВМ1 группы

Капустянский Владислав

Александрович

Проверил: преподаватель

Денис Александрович

Москва, 2010г.

Ванадий:

  1. История открытия
  2. Нахождения в природе

Месторождения

  1. Получение Ванадия
  2. Физические свойства
  3. Химические свойства
  4. Применение

Атомно-водородная энергетика

Химические источники тока

  1. Биологическая роль и воздействие
  2. Изотопы

Литий:

  1. История открытия
  2. Нахождение в природе

Геохимия

Месторождения

  1. Получение Лития
  2. Физические свойства
  3. Химические свойства
  4. Применение

Термоэлектрические материалы

Химические источники тока

Лазерные материалы

Окислители

Дефектоскопия

Пиротехника

Электроника

Металлургия

Ядерная электроника

Сушка газов

Медицина

Смазочные материалы

Регенерация кислорода в автономных аппаратах

Силикатная промышленность

Прочие области

  1. Изотопы лития