Какие бывают слуховые аппараты? Как правильно выбрать слуховой аппарат? Слуховые аппараты виды и характеристики.

С помощью звуковых сигналов человек получает до 10% информации.

Характерными особенностями слухового анализатора являются следующие способности:

  • - быть готовым к приему информации в любой момент времени;
  • - воспринимать звуки в широком диапазоне частот и выделять необходимые;
  • - устанавливать со значительной точностью месторасположение источника звука.

В связи с этим слуховое представление информации осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухового анализатора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека-оператора (предупредительные сигналы и сигналы опасности), для передачи информации человеку-оператору, находящемуся в положении, не обеспечивающем ему достаточной для работы видимости объекта управления, приборной панели и т.п., а также для разгрузки зрительной системы.

Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового анализатора оператора проявляются в восприятии звуковых сигналов. С физической точки зрения звуки представляют собой распространяющиеся механические колебательные движения в слышимом диапазоне частот.

Механические колебания характеризуются амплитудой и частотой. Амплитуда - наибольшая величина измерения давления при сгущениях и разрежениях. Частота/- число полных колебаний в одну секунду. Единицей ее измерения является герц (Гц) - одно колебание в секунду. Амплитуда колебаний определяет величину звукового давления и интенсивность звука (или силу звучания). Звуковое давление принято измерять в паскалях (Па).

Основные параметры (характеристики) звуковых сигналов (колебаний):

  • - интенсивность (амплитуда);
  • - частота и форма, которые отражаются в таких звуковых ощущениях, как громкость, высота и тембр.

Воздействие звуковых сигналов па звуковой анализатор определяется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м) определяется плотностью потока звуковой энергии (плотностью мощности).

Для характеристики величин, определяющих восприятие звука, существенными являются не столько абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (У0 = 10"12 Вт/м2 или Р0 = = 2 o 10~° Па). В качестве таких относительных единиц измерения используют децибелы (дБ):

где Ь - уровень интенсивности звука и звукового давления; ] и Р - соответственно интенсивность звука и звуковое давлением/о и Р0 - их пороговые значения.

Интенсивность звука уменьшается обратно пропорциональны квадрату расстояния; при удвоении расстояния она снижается на 6 дБ. Абсолютный порог слышимости звука составляет (принят) 2 o 10~5 Па (Ю-12 Вт/м2) и соответствует уровню 0 дБ.

Пользование шкалой децибел удобно, так как почти весь диапазон слышимых звуков укладывается менее чем в 140 дБ (рис. 2.11).

Громкость - характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах. Фон численно равен уровню

Рис. 2.11.

звукового давления в дБ для чистого тона частотой 1000 Гц. Дифференциальная чувствительность к изменению громкости К= (Л///) наблюдается в диапазоне частот 500-1000 Гц. С характеристикой громкости тесно связана характеристика раздражающего действия звука. Ощущение неприятности звуков возрастает с увеличением их громкости и частоты.

Минимальный уровень определенного звука, который требуется для того, чтобы вызвать слуховое ощущение в отсутствие шума, называют абсолютным порогом слышимости. Значение его зависит от топа звука (частота, длительность, форма сигнала), метода его осуществления и субъективных особенностей слухового анализатора оператора. Абсолютный порог слышимости имеет тенденцию с возрастом уменьшаться (рис. 2.12).

Высота звука, как и его громкость, характеризует звуковое ощущение оператора. Частотный спектр слуховых ощущений простирается от 16-20 до 20 000^22 000 Гц. В реальных условиях человек воспринимает звуковые сигналы на определенном акустическом фоне. При этом фон может маскировать полезный сигнал. Эффект маскировки имеет двоякое значение. В ряде случаев фон может маскировать полезный (нужный) сигнал, а в некоторых случаях - улучшать аку

Рис. 2.12.

стическую обстановку. Так, известно, что имеется тенденция маскировки высокочастотного тона низкочастотным, который менее вреден для человека.

Слуховой анализатор способен фиксировать даже незначительные изменения частоты входного звукового сигнала, т.е. обладает избирательностью, которая зависит от уровня звукового давления, частоты и длительности звукового сигнала. Минимально заметные различения составляют 2-3 Гц и имеют место на частотах менее 10 Гц, для частот более 10 Гц минимально заметные различения составляют около 0,3% частоты звукового сигнала. Избирательность повышается при уровнях громкости 30 дБ и более и длительности звучания, превышающей 0,1 с. Минимально заметные различения частоты звукового сигнала существенно уменьшаются при его периодическом повторении. Оптимальными считаются сигналы, повторяющиеся с частотой 2-3 Гц. Слышимость, а следовательно, и обнаруживаемость звукового сигнала зависят от длительности его звучания. Так, для обнаружения звуковой сигнал должен длиться не менее 0,1 с.

Наряду с рассмотренными звуковыми сигналами в управлении используются речевые сигналы для передачи информации или команд управления от оператора к оператору. Важным условием восприятия речи является различение длительности и интенсивности отдельных звуков и их комбинаций. Среднее время длительности произнесения гласного звука равно примерно 0,36 с, согласного 0,02-0,03 с. Восприятие и понимание речевых сообщений существенно зависят от темпа их передачи, наличия интервалов между словами и фразами. Оптимальным считается темп 120 слов в мин, интенсивность речевых сигналов должна превышать интенсивность шумов на 6,5 дБ. При одновременном увеличении уровня речевых сигналов и шумов при постоянном их отношении разборчивость речи сохраняется и даже несколько увеличивается. При значительном увеличении уровня речи и шума до 120 и 115 дБ разборчивость речи ухудшается на 20%. Распознавание речевых сигналов зависит от длины слова. Так, односложные слова распознаются в 13% случаев, шестисложные - в 41%. Это объясняется наличием в сложных словах большого числа опознавательных признаков. Имеет место повышение до 10% точности распознавания слов, начинающихся с гласного звука. При переходе к фразам оператор воспринимает не отдельные слова или их сочетания, а смысловые грамматические конструкции, длина которых (до уровня 11 слов) не имеет особого значения.

Полезно знать, что используемые стереотипные словосочетания, фразеологизмы распознаются значительно хуже, чем это можно ожидать. Увеличение количества альтернативных слов, возможных словосочетаний, фраз повышает правильность распознавания. Однако включение фраз, допускающих неоднозначность толкования их смыслового содержания, приводит к замедлению процесса восприятия.

Таким образом, вопрос организации звукового и речевого взаимодействия "оператор - оператор", "техническое средство - оператор" является не тривиальным, и его оптимальное решение оказывает существенное воздействие на безопасность производственных процессов.

В слуховом ощущении различают высоту, громкость и тембр звука . Эти характеристики слухового ощущения связаны с частотой, интенсивностью и гармоническим спектром - объективными характеристиками звуковой волны. Задачей системы звуковых измерений является установить эту связь и таким образом дать возможность при исследовании слуха у различных людей единообразно сопоставлять субъективную оценку слухового ощущения с данными объективных измерений.

Высота звука — субъективная характеристика, определяемая частотой его основного тона: чем больше частота, тем выше звук.

В значительно меньшей степени высота зависит от интенсивности волны: на одной и той же частоте более сильный звук воспринимается более низким.

Тембр звука почти исключительно определяется спектральным составом. Например, ухо различает одну и ту же ноту, воспроизведенную на разных музыкальных инструментах. Одинаковые по основным частотам звуки речи у различных людей также отличаются по тембру. Итак, тембр - это качественная характеристика слухового ощущения, в основном обусловленная гармоническим спектром звука.

Громкость звука Е — это уровень слухового ощущения над его порогом. Она зависит, прежде всего, от интенсивности звука. Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

Уровни интенсивности и уровни громкости звука. Единицы измерения. Закон Вебера-Фехнера .

Звуковая волна создает ощущение звука, при силе звука превышающей некоторую минимальную величину, называемую порогом слышимости. Звук, сила которого лежит ниже порога слышимости, ухом не воспринимается: он слишком слаб для этого. Порог слышимости различен для различных частот (Рис. 3). Наиболее чувствительно человеческое ухо к колебаниям с частотами в области 1000 - 3000 Гц; для этой области порог слышимости достигает величины порядка I 0 = 10 -12 вт/м 2 . К более низким и к более высоким частотам ухо значительно менее чувствительно.

Колебания очень большой силы, порядка нескольких десятков Вт/м 2 , перестают восприниматься как звуковые: они вызывают в ухе осязательное чувство давления, переходящее дальше в болевое ощущение. Максимальная величина силы звука, при превышении которой возникает болевое ощущение, называется порогом осязания или порогом болевого ощущения (Рис. 3). На частоте 1 кГц она равна I m = 10 вт/м 2 .

Порог болевого ощущения различен для различных частот. Между порогом слышимости и болевым порогом лежит область слышимости, изображенная на рисунке 3.

Рис. 3. Диаграмма слышимости.

Отношение интенсивностей звука для этих порогов равно 10 13 . Удобно использовать логарифмическую шкалу и сравнить не сами величины, а их логарифмы. Получили шкалу уровней интенсивности звука. Значение I 0 принимают за начальный уровень шкалы, любую другую интенсивность I выражают через десятичный логарифм ее отношения к I 0 :


Логарифм отношения двух интенсивностей измеряется в белах (Б).

Бел (Б) — единица шкалы уровней интенсивности звука, соответствующая изменению уровня интенсивности в 10 раз. Наряду с белами широко применяются децибелы (дБ), в этом случае формулу (6) следует записать так:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 дБ

Рис. 4. Интенсивности некоторых звуков.

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера. Если, согласно этому закону, увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения будет возрастать в арифметической прогрессии (то есть на одинаковую величину).

Элементарное приращение dE громкости звука прямо пропорционально отношению приращения dI интенсивности к самой интенсивности I звука:

где k — коэффициент пропорциональности, зависящий от частоты и интенсивности.

Тогда уровень громкости E данного звука определяется путем интегрирования выражения 8 в пределах от некоторого нулевого уровня I 0 до заданного уровня I интенсивности.

Таким образом, закон Вебера-Фехнера формулируется следующим образом:

Уровень громкости данного звука (при определенной частоте звуковых колебаний) прямо пропорционален логарифму отношения его интенсивности I к значению I 0 , соответствующему порогу слышимости:

Сравнительную шкалу, равно как единицу бел и децибел, применяют также для характеристики уровней звукового давления.

Единицы измерения уровней громкости имеют такие же названия: бел и децибел, но для отличия от шкалы уровней интенсивности звука в шкале уровней громкости децибелы называют фонами (Ф).

Бел - изменение уровня громкости тона частотой 1000 Гц при изменении уровня интенсивности звука в 10 раз . Для тона 1000 Гц численные значения в белах уровня громкости и уровня интенсивности совпадают.

Если построить кривые для различных уровней громкости, например, ступенями через каждые 10 фонов, то получится система графиков (рис. 1.5), которая дает возможность найти зависимость уровня интенсивности звука от частоты при любом уровне громкости.

В целом система кривых равной громкости отражает зависимость между частотой, уровнем интенсивности и уровнем громкости звука и дает возможность по двум известным из этих величин находить третью - неизвестную.

Исследование остроты слуха, т. е. чувствительность слухового органа к звукам разной высоты, называется аудиометрией. Обычно при исследовании находят точки кривой порога слышимости при частотах, пограничных между октавами. Октава - это интервал высот тона, в котором отношение крайних частот равно двум. Существует три основных метода аудиометрии: исследование слуха речью, камертонами и аудиометром.

График зависимости порога слышимости от звуковой частоты называется аудиограммой . Потеря слуха определяется путем сравнения аудиограммы больного с нормальной кривой. Используемый при этом аппарат — аудиометр — представляет собой звуковой генератор с независимой и тонкой регулировкой частоты и уровня интенсивности звука. Аппарат оборудован телефонами для воздушной и костной проводимости и сигнальной кнопкой, с помощью которой исследуемый отмечает наличие слухового ощущения.

Если бы коэффициент k был постоянным, то из L Б и E следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука так же, как и интенсивность измерялась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы 16.

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т.е. k = 1 и

Громкость на других частотах можно измерять, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого при помощи звукового генератора создают звук частотой 1 кГц. Меняют интенсивность этого звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, будет равна громкости этого звука в фонах.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков — порогу слышимости; для всех частот E ф = 0 Ф , для 1 кГц интенсивность звука I 0 = 10 - 12 Вт/м 2 (рис..5.). Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500 - 3000 Гц. Верхняя кривая соответствует порогу болевого ощущения; для всех частот Е ф » 130 Ф , для 1 кГц I = 10 Вт/м 2 .

Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот. Как было отмечено, только для частоты 1 кГц громкость звука в фонах равна интенсивности звука в децибелах.

По кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Например, пусть интенсивность звука частотой 200 Гц равна 80 дБ.

Какова громкость этого звука? На рисунке находим точку с координатами: 200 Гц, 80 дБ. Она лежит на кривой, соответствующей уровню громкости 60 Ф, что и является ответом.

Энергии, соответствующие обычным звукам, весьма невелики.

Для иллюстрации этого можно привести следующий курьезный пример.

Если бы 2000 человек вели непрерывно разговор в течение 1½ часов, то энергии их голосов хватило бы лишь на то, чтобы вскипятить один стакан воды.

Рис. 5. Уровни громкости звука для звуков различных интенсивностей.

В системах управления значительная часть инфор­мации поступает к человеку в форме звуковых сигна­лов. Отражающие эти сигналы ощущения вызываются действием звуковой энергии на слуховой анализатор. Он состоит из уха, слухового нерва и сложной систе­мы нервных связей и центров мозга. В аппарат, обо­значаемый термином «ухо», входят: наружное (звуко­улавливающий аппарат), среднее (звукопередающий аппарат) и внутреннее (звуковоспринимающий аппа­рат) ухо. Ухо воспринимает определенные частоты звуков благодаря функциональной способности волокон его мембраны к резонансу. Физиологическое значение наружного и среднего уха заключается в проведении и усилении звуков. Слуховой анализатор человека улав­ливает форму волны, частотный спектр чистых тонов и шумов, осуществляет анализ и синтез в определенных пределах частотных компонент звуковых раздражении, обнаруживает и опознает звуки в большом диапазоне интенсивностей и частот. Слуховой анализатор позво­ляет дифференцировать звуковые раздражения и оп­ределять направление звука, а также удаленность его источника. Источником звуковых волн может быть любой процесс, вызывающий местное изменение дав­ления или механические напряжения в среде. Слухо­вой аппарат человека воспринимает как слышимый звук колебания с частотой 16 Гц - 20 кГц; ухо наибо­лее чувствительно к колебаниям в области средних частот - от 1000 до 4000Гц. Звуки частот ниже 16 Гц называются инфразвуками, а выше 20кГц - ультразву­ками. Инфразвуки и ультразвуки также могут оказы­вать воздействие на организм, но оно не сопровожда­ется слуховым ощущением.

Физически звук характеризуется амплитудой (ин­тенсивностью), частотой и формой звуковой волны. Интенсивностью звукового сигнала принято считать силу звука в Вт/м2. Так как сила звука пропорциональ­на квадрату звукового давления, то в практике пси­хофизиологической акустики чаще всего используется непосредственно звуковое давление, выраженное в децибелах от исходного уровня, равного 2x10-5 Па. Сила звука в децибелах определяется выражением

где J - сила звука данного сигнала; J 0 - исходный уровень силы звука эталонного сигнала.

Так как , то

где а - коэффициент пропорциональности; Р зв - зву­ковое давление; - исходный уровень давления.

Давление 210 -5 Па при частоте 2000 Гц соот­ветствует силе звука, равной 10 ~12 Вт/м2, и считается абсолютным порогом звукового анализатора.

В реальных условиях деятельности человеку прихо­дится воспринимать звуковые сигналы на том или ином фоне. При этом фон может маскировать полезный сигнал, что, естественно, затрудняет его обнаружение. При разработке и конструировании акустических ин­дикаторов задача борьбы с эффектом маскировки и поисков оптимального отношения интенсивности полезного сигнала к интенсивности шума (фона) являет­ся одной из важнейших.



Основными количественными характеристиками слухового анализатора являются абсолютный и диф­ференциальный пороги. Нижний абсолютный порог соответствует интенсивности звука в децибелах, обна­руживаемого испытуемым с вероятностью 0,5; верхний порог - интенсивность, при которой возникают раз­личные болевые ощущения (щекотание, покалывание, головокружение и т.д.). Между ними расположена область восприятия речи (рис. 11.7).

Рис. 11.7. Линии равной громкости.

Рис. 11.8. Дифференциальные пороги слухового анализатора:

а - по интенсивности (D 13); б - по частоте (D F).

Человек оценивает звуки, различные по интенсив­ности, как равные по громкости, если частоты их так­же различны. Например, тон с интенсивностью 120 дБ и частотой 10 Гц оценивается как равный по громкости тону, имеющему интенсивность 100 дБ и частоту 1000 Гц. Таким образом, снижение интенсивности как бы компенсируется увеличением частоты. Субъектив­ное ощущение интенсивности звука называется гром­костью и измеряется в фонах. Уровень громкости в фонах численно равен интенсивности звука в децибе­лах для чистого тона частотой 1000 Гц, воспринимае­мого как равногромкий с данным звуком.

Величина едва различимой прибавки к исходному звуковому раздражителю зависит не только от его интенсивности, но и от частоты. В пределах среднего участка диапазона изменения звука по частоте и интенсивности величина энергетического дифференци­ального порога примерно постоянна и составляет 0,1 от исходной интенсивности раздражителя (рис. 11.8, а).



Дифференциальный порог по частоте зависит как от частоты исходного звука, так и от его интенсивно­сти. В пределах от 60 до 2000 Гц при интенсивности звука выше 30 дБ абсолютная величина едва различи­мой прибавки равна примерно 2 - 3 Гц. Для звуков выше 2000 Гц эта величина резко возрастает и изменя­ется пропорционально росту частоты (рис. 11.8, б). От­носительная величина дифференциального порога для звуков в зоне 200- 16000 Гц является почти констант­ной и равна примерно 0,002. При сокращении интен­сивности звука ниже 30 дБ величина дифференциаль­ного порога резко возрастает.

Временной порог чувствительности акустического анализатора, т. е. длительность звукового раздражите­ля, необходимая для возникновения ощущения, так же как пороги по громкости и высоте, не является посто­янной величиной. С увеличением как интенсивности, так и частоты он сокращается. При достаточно высо­кой интенсивности (30 дБ и более) и частоте (1000 Гц и более) слуховое ощущение возникает уже при дли­тельности звукового раздражителя, равной всего 1 мс. Однако при уменьшении интенсивного звука той же частоты до 10 дБ временной порог достигает 50 мс. Аналогичный эффект дает и уменьшение частоты.

Оценка громкости и высоты очень коротких зву­ков затруднена. При длительности синусоидального тона 2 - 3 мс человек лишь отмечает его наличие, но не может определить его качеств. Любой звук оценивается только как «щелчок». С увеличением длительности звука слуховое ощущение постепенно проясняется: человек начинает различать высоту и громкость. Минимальное время, необходимое для отчетливого ощу­щения высоты тона, равно примерно 50 мс.

Дифференцировка двух звуков по частоте и интен­сивности также зависит от отношения их по длитель­ности и от интервала между ними. Как правило, звуки, равные по длительности, различаются точнее, чем не­равные.

Акустический анализатор обеспечивает также от­ражение и положения источника звука в простран­стве: его расстояние и направление относительно субъекта.

Пороги зависят от времени предъявления сигна­ла, положения головы испытуемого, адаптации и изме­няются с течением времени для одного и того же ис­пытуемого. Эти изменения могут составлять до 5 дБ за 0,5 мин, тогда как в некоторых условиях ярко выражен­ной тенденции к увеличению или уменьшению порога может и не быть даже в течение часа. Сравнение каж­додневных изменений порогов, полученных в течение некоторого периода времени, с усредненными данны­ми этих изменений показывает, что колебание измене­ний в 3 - 4 раза превышает усредненное. Иногда по­рог может изменяться даже в течение нескольких секунд. Если стимул состоит из пяти сигналов одного тона длительностью по 0,4 с, следующих друг за дру­гом с интервалом в 0,6 с, то все они будут восприняты только при интенсивности, на 6 дБ превышающей аб­солютный порог, когда не слышно ни одного из этих сигналов. Значительное влияние на величину порогов оказывает длительность сигнала. Так, для синусоидаль­ных сигналов средних и высоких частот в диапазоне длительностей от 10 до 100 - 200 мс удвоение длитель­ности приводит к понижению порога на 3 дБ.

Специфическим видом слухового восприятия яв­ляется восприятие речевых сообщений. Речь представ­ляет одно из наиболее эффективных исторически сло­жившихся средств передачи информации человеку. Вопрос о характеристиках речевых сигналов прежде всего возникает при разработке аппаратуры, предназ­наченной для передачи информации от человека к человеку. Однако этим его значение не ограничивается. В связи с развитием синтетической телефонии откры­ваются возможности использования речевых сигналов также при обмене информацией между человеком и машиной.

Проблема речи имеет кардинальное значение в психологии. Она выступает в той или иной форме при изучении сенсорных процессов, памяти, умственных действий, двигательных навыков, свойств личности и т. д. Данные, накопленные в экспериментальной пси­хологии, позволили раскрыть ряд существенных ас­пектов механизмов восприятия речи и речеобразования. Они послужили основой для постановки проблемы речевой коммуникации в плане инженер­ной психологии.

Задачи техники связи потребовали изучения зави­симости восприятия речевых сигналов от их акусти­ческих характеристик, определения разборчивости речи в условиях шума, поиска путей повышения раз­борчивости и т. п.

Форма волны является функцией, которая связы­вает мгновенное речевое давление со временем. Рече­вое давление есть сила, с которой речевая волна давит на единицу площади, обычно перпендикулярной к гу­бам говорящего и расположенной в произвольном, но определенном участке по отношению к говорящему, на расстоянии 1 м от него.

Речевой звук является сложным. Он включает ряд обертонов, находящихся в гармоничном отношении к основному тону (гармоник). Для повышения разборчи­вости речи увеличивают ее интенсивность.

Важным условием восприятия речи является раз­личение длительности произнесения отдельных звуков и их комбинаций. Среднее время длительности произ­несения гласного равно примерно 0,35 с. Длительность согласных колеблется от 0,02 до 0,3 с. При восприятии потока речи особенно важно различение интервалов между словами или группами слов. Исключение пауз или их неверная расстановка может привести к иска­жению смысла воспринимаемой речи.

Речь обладает не только акустическими, но и неко­торыми другими специфическими характеристиками. Слово имеет определенный фонетический, фонематический, слоговой, морфологический состав, является определенной частью речи, несет определенную смыс­ловую нагрузку. Важным фактором, влияющим на опоз­нание слов, является их частотная характеристика. Чем чаще встречается слово, тем при более низком отно­шении речи к шуму оно опознается.

При восприятии отдельных слогов и слов суще­ственную роль играют их фонетические характерис­тики; при восприятии словосочетаний в действие всту­пают синтаксические зависимости, а фонетические отступают на второй план.

Слушатель улавливает синтаксическую связь меж­ду словами, которая помогает ему восстановить сооб­щение, разрушенное шумом. Если абстрагироваться от лексико-семантических характеристик словосочетаний и представить только модель связи, то оказывается, что слушатель легче всего улавливает согласование, затем управление и, наконец, примыкание. Интересно отме­тить, что стереотипные словосочетания, фразеологиз­мы опознаются згачительно хуже, чем можно было бы ожидать исходя из вероятностной модели восприятия. Слишком большое сужение сочетательных возможно­стей слова ограничивает возможность поиска. Увели­чение количества возможных ответов как бы расширя­ет «зону поиска» и тем самым повышает вероятность правильного опознания. Это лишний раз подтверждает положение о том, что аудирование есть активный про­цесс.

При переходе к фразам слушатель начинает ориен­тироваться уже не на отдельные элементы предложе­ния, а на весь его сложный грамматический каркас.

Изучалось также восприятие речевых сообщений, которые включали фразы, допускающие неоднознач­ную интерпретацию (вызывающие «семантический шум»). Было показано, что в этих условиях процесс восприятия замедляется, возникает необходимость повторного восприятия тех частей текста, которые предшествуют критической фразе. В ходе восприятия человек, преодолевая неоднозначность, осуществляет трансформацию фраз.

Приведенные данные показывают, что аудирова­ние представляет собой многоуровневый процесс, в котором сочетаются фонетический, синтаксический и семантический уровни. При этом вышележащие уров­ни играют ведущую роль, определяя ход всего процес­са аудирования, что необходимо иметь в виду при орга­низации речевых сообщений.

На качество восприятия и понимания речевых сообщений оператором оказывает влияние два основ­ных интегральных фактора: правильное построение аудиотекста и организация речевого сообщения.

Аудиотекстом называется текст, предназначенный для смыслового восприятия на слух. Звуковая речевая связь в деятельности оператора очень часто принима­ет именно такую форму логического и семантического объединения отдельных слов и предложений в смыс­ловые блоки - сверхфазовые единства (СФЕ). Пони­мание звучащего сообщения во многом обусловлено действием двух факторов: логико-смысловой структу­ры аудиотекста и его паралингвистической реализа­ции (скорости речи, распределения фраз, интонации).

Логико-смысловая структура аудиотекста опреде­ляется способом изложения мыслей. Наиболее опти­мальным считается дедуктивный способ их изложения (от общего к частному), при котором первое предложе­ние нацеливает аудитора на восприятие определенной темы, после чего следует ряд конкретных положений, доказывающих правильность посылок умозаключений. В психолингвистических исследованиях при анализе текстов исходят из следующих положений:

■ расчленение всего текста на смысловые блоки - СФЕ;

■ представление схемы всего текста в виде логической це­почки, являющейся каркасом, на который как бы нанизы­вается весь текст;

■ вычисление в выделенных СФЕ информации с помощью некоторых формализованных процедур.

Информационная ценность аудиотекста может быть усилена с помощью полного или частичного по­вторения, особенно ключевых слов в СФЕ. Это обеспе­чивает избыточность сообщения и его помехоустойчи­вость. Большое значение при организации аудиотекста имеет также выбор слов для компоновки текстов и выбор грамматических конструкций. Словарь текста должен быть максимально ограничен условиями дея­тельности: чем он меньше, тем выше помехоустойчи­вость аудиотекста. Все слова должны быть понятны и знакомы, частота их встречаемости должна быть высо­кой. Грамматические конструкции и связи между сло­вами должны быть четкими и простыми. Любое услож­нение ведет к ухудшению понимания и разборчивости. Определенное значение имеет длина предложений аудиотекста (не более 9-11 слов) и компоновка смыс­ловых блоков (не более 7). В противном случае проис­ходит перегрузка оперативной памяти.

Организация речевого сообщения предусматрива­ет построение его в форме, наиболее пригодной для восприятия оператором. Правильная организация ре­чевого сообщения позволяет обеспечить требуемые уровни разборчивости речи. Она оценивается процен­тным отношением числа правильно принятых слуша­телем элементов речевой передачи к числу передан­ных. Элементами речи считаются: форманты (области концентрации энергии в спектре данного звука), от­дельные звуки (фонемы), слоги, слова, словосочетания (фразы).

Разборчивость речи можно определить экспери­ментально с помощью артикуляционных таблиц и рас­четным методом, исходя из разборчивости формант и известных функциональных зависимостей. Нормы разборчивости речи приведены в табл. 11.5.

Таблица 11.5

Нормы разборчивости речи

Разборчивость речи является важнейшей характе­ристикой, определяющей качество ее восприятия. В ус­ловиях тишины основным фактором, влияющим на разборчивость, является интенсивность. Частота голоса не оказывает существенного влияния на разборчи­вость речи: высокий и низкий голос понимаются оди­наково хорошо. Оптимальный диапазон интенсивнос­ти речи составляет от 40 до 60 дБ. Основным фактором, влияющим на разборчивость

Рис. 11.9. Влияние уровня шума на разборчивость речи.

речи в условиях шума, является отношение мощности речи к мощности шума (рис. 11.9). Обычно речь бывает понятной, если интен­сивность речи превышает интенсивность шума на 6 дБ.

Большое значение на разборчивость оказывает правильный выбор слов. В условиях шума двухслож­ные слова опознаются на 30% лучше, чем однослож­ные, а трехсложные - на 50%. Слова с ударением на последнем слоге опознаются лучше, чем с ударением на первом. Важным фактором является также вероят­ностная характеристика слов: чем чаще оно встречает­ся, тем лучше опознается. Наибольшей помехоустой­чивостью к белому шуму обладают звуки Р, Л, М, Н, наихудшей - С, Ф, Ц, Т, Г. Распознаваемость слов повышается, если они начинаются с гласных. Опти­мальным считается темп речи от 60 до 80 слов в мину­ту, допустимым - до 120 слов в минуту.

Длина фразы не должна превышать 7±2 слов, что определяется объемом оперативной памяти. Наиболее значащие слова следует располагать в первой трети фразы. В разрешающих фразах, командах разрешение следует располагать в конце фразы, после содержания действия, в запрещающих - наоборот.

Повышению разборчивости речи способствует зрительный контроль (возможность видеть говорящего). Эффективным при интенсивности речи более 85 дБ является применение шумозаглушек. Однако при уров­не более 95 дБ применение шумозаглушек может ока­заться неэффективным. Большое значение имеет вы­полнение специальных требований к говорящему: достаточная интенсивность и оптимальный темп речи; большая продолжительность слогов; повышенная ва­риативность звуковых высот; преобладание (по време­ни) речевых звуков, а не пауз; повторение передачи должно иметь ту же структуру и те же слова, что в первоначальном случае.

С помощью речи формируется особый вид сигна­лов, называемых речевыми. Любой сигнал является носителем информации (см. главу И). Речевой сигнал и представляемая им информация используются в дея­тельности оператора, а следовательно являются объек­том изучения инженерной психологии в следующих случаях:

■ при организации общения между операторами (речевая коммуникация);

■ при организации взаимодействия между человеком и ЭВМ (речевой ввод и вывод информации);

■ при проведении контроля функционального состояния оператора: по анализу спектрально-временных характе­ристик речи можно судить о состоянии человека в про­цессе его работы;

■ при организации подсказки оператору о необходимых действиях.

Технология изготовления современных слуховых аппаратов постоянно совершенствуется. Благодаря ученым-аудиологам и инженерам разрабатываются слуховые аппараты значительно меньшего размера, обладающие более качественным звуком.

Сегодня существуют типы слуховых аппаратов, которые различаются по таким характеристикам:

  • по способам проведения звука - воздушной и костной проводимости;
  • по усилению входящего сигнала - линейные и нелинейные;
  • по способам настройки (регулировки) - с ручной настройкой и цифровым программированием;
  • по месту расположения - заушные (открытые, RIC) , внутриушные (внутриканальные, невидимые), в очковой оправе, карманные;
  • по мощности (силе звука) - малой и средней мощности, мощные и сверхмощные;
  • по методу обработки сигнала - цифровые и аналоговые.

Все виды слуховых аппаратов обладают рядом собственных преимуществ, которые зависят от размера использующейся в аппарате технологии, а также дизайна и удобства пользования.

Все существующие на сегодняшний день слуховые аппараты можно разделить на две основные группы:

По месту расположения в ухе (внутриканальные, внутриушные, заушные)

Заушный слуховой аппарат.

Заушные слуховые аппараты - простые, надежные в использовании устройства. Размещаются за ухом человека и великолепно компенсируют все возможные нарушения слуха. Подходят для любой возрастной категории.

Аппарат "открытое ухо".

В классификации заушных слуховых аппаратов выделяются новые аппараты, так называемого открытого типа (OpenFit - с английского "открытое протезирование").

Корпус слухового аппарата размещается позади уха, а звуководная трубочка, соединяющая слуховой аппарат с ухом, настолько тонкая, что практически не видна. Такая форма делает слуховой аппарат менее заметным даже по сравнению с аппаратами внутриушного типа. Кроме прочего слуховые аппараты открытого типа имеют современный дизайн, улучшающий визуальное восприятие прибора. Технологически такие слуховые аппараты уникальны, т.к. используются только самые современные электронные микросхемы.

Внутриушные слуховые аппараты ITE - компактные, приборы, которые размещаются в ухе. Они более крупные, чем внутриканальные модели, предназначены для компенсации более глубоких нарушений слуха (в речевой зоне до 100 дБ). Изготовленный по индивидуальному слепку корпус, точно повторяет строение уха, что гарантирует максимальный комфорт владельцу.

Внутриканальные слуховые аппараты CIC и невидимые IIC - располагаются внутри слухового прохода. Это наиболее миниатюрные и малозаметные модели, которые благодаря своему глубокому залеганию, обеспечивают превосходное качество звука, отличную разборчивость, четкость речи и наиболее естественное звучание. Корпус для такого прибора изготавливается всегда индивидуально и полностью повторяет все особенности строения ушного канала. Размещенный глубоко в ухе, такой аппарат практически незаметен окружающим и благодаря новым технологиям может компенсировать даже 4-ю степень тугоухости.

Телефон в ушном канале RIC

Телефон в ушном канале RIC - это самые миниатюрные заушные слуховые аппараты, новейшее достижение в области разработки и производства слуховых аппаратов. В таких приборах ресивер (телефон) расположен в специальном корпусе, и помещается непосредственно в ушной канал, чтобы стать максимально незаметным и удобным. Такие аппараты еще называют аппаратами-невидимками.

Карманные слуховые аппараты ушли в прошлое, уступив место заушным моделям.

Аппараты в очковой оправе имеют ограниченное применение по причине своего неудобства.

По способу обработки звукового сигнала (аналоговые и цифровые).

Современное слухопротезирование основано на использовании только цифровых технологий в производстве слуховых аппаратов, так как цифровые слуховые аппараты имеют ряд несомненных преимуществ в сравнении с аналоговыми технологиями.

Так, например:

  1. многоканальность - это необходимая возможность получить максимальный результат от слухопротезирования в случае частотно-неравномерного снижения слуха (разного на разных частотах).
  2. наличие двух или трех микрофонов, меняющих свою направленность - улучшает разборчивость речи в шуме.
  3. многопрограммность - слуховой аппарат настраивается на работу в различных акустических ситуациях, как то шум, речь в шуме, речь в далеке и т.д.
  4. шумоподавление - очень важно для улучшения разборчивости речи в шуме и также для общего комфорта.
  5. устранение неприятного звучания собственного голоса.
  6. подавление шумов низкого входного сигнала (шум от компьютера, шум улицы).
  7. управление аппаратом с помощью пульта дистанционного управления.
  8. устранение неприятного свиста (обратной связи), обязательно возникающего при работе слухового аппарата.

Профессиональные знания и опыт работы специалиста, современная аппаратура для диагностики слуха, высокое качество слуховых аппаратов дают возможность каждому пациенту улучшить звуковое восприятие мира, чтобы быть социально адаптированным.

Технические характеристики слуховых аппаратов отличают классы и модели аппаратов и являются основным показателем эффективности приборов. Благодаря направленной микрофонной системе и системе распознавания речи, человек со слуховым аппаратом может отличать речь собеседника от фоновых шумов. Системы аппарата автоматически определяют направление основного источника шума, настраивая чувствительность микрофона так, чтобы восприятие фоновых шумов было минимальным, а восприятие речи - максимальным.


В зависимости от функций слуховых аппаратов существует несколько вариантов их классификации:

По месту ношения слуховые аппараты разделяются на четыре вида:

  • заушные
  • внутриушные
  • карманные
  • очковые

Заушный СА помещается за ушной раковиной. К нему с помощью звукопроводящей трубочки присоединен ушной вкладыш, который вставляется в слуховой проход. Он проводит звук в ухо и обеспечивает фиксацию аппарата. Заушный СА обеспечивает большее усиление и предоставляет дополнительные технические возможности по сравнению с внутриушным СА.

Внутриушной СА полностью размещается в слуховом проходе. Все электронные комплектующие находятся в корпусе аппарата, который изготавливается индивидуально, в соответствии с анатомическим строением уха владельца. Основное достоинство аппарата заключается в его малозаметности и в том, что отверстие приема звука располагается внутри ушной раковины, то есть, там, где это предусмотрено природой.

Внутриканальный СА располагается глубоко в слуховом проходе. Самый маленький аппарат CIC (с английского – "полностью внутри канала") размещается у барабанной перепонки и снаружи практически не виден.

Карманный СА состоит из прямоугольного корпуса, в котором расположены микрофон, усилитель и источник питания. Телефон карманного аппарата при помощи шнура соединяется с корпусом и помещается в ухо вместе с вкладышем. Карманный СА, в отличие от других конструкций, может иметь максимальную мощность, так как микрофон и телефон находятся на значительном расстоянии, что предотвращает возникновение акустической обратной связи.

По способу звукопроведения СА разделяются на два вида:

  • костной проводимости.
  • воздушной проводимости.

СА костной проводимости применяется для протезирования только кондуктивных потерь слуха. Его телефон выполнен в виде костного вибратора, который помещается за ухом и плотно прилегает к сосцевидному отростку. Усиленный звуковой сигнал в таком аппарате преобразуется в вибрационный.

СА воздушной проводимости используется для протезирования всех видов потерь слуха. Звук с телефона передается через ушной вкладыш, который помещается в слуховом проходе.

По способу обработки сигнала слуховые аппараты делятся на два типа:

  • аналоговые
  • цифровые

Аналоговый СА состоит из трех основных частей: микрофона, электронного усилителя и телефона. Микрофон воспринимает механические звуковые колебания и преобразует их в аналоговые электрические сигналы, направляемые в усилитель. Там они усиливаются и передаются на телефон, превращающий электрические сигналы вновь в звуковые колебания.

Цифровой СА дополнительно преобразует аналоговые сигналы в цифровые, после чего обрабатывает их с помощью компьютерной технологии.

Аналоговый сигнал переводится в двоичный код, как это происходит при записи на компакт-диск. В новейших моделях СА уже появились цифровые микрофоны, исключающие эту операцию. Цифровой процессор обрабатывает сигналы, то есть усиливает и изменяет их характеристики в зависимости от индивидуальной потери слуха. После этого цифровой сигнал вновь превращается в аналоговый и посылается на телефон.

Цифровые технологии, бурно развивающиеся в последнее время, позволили достигнуть невиданных ранее возможностей электроакустической коррекции слуха. Крошечный микрочип обладает быстродействием самых современных компьютерных процессоров, что позволяет реализовать очень сложные и высокоэффективные алгоритмы обработки звука. Фактически цифровой СА можно назвать "разумной слуховой системой" и даже "слуховым компьютером".

Он "умеет" отличать речь от шума, выделяя и усиливая ее при одновременном подавлении шумового сигнала, что значительно облегчает понимание речи в сложной акустической обстановке. Его частотный диапазон разделен на несколько каналов, в каждом из которых проводится независимая настройка параметров. Цифровой аппарат имеет комфортное звучание, приближенное к естественному, благодаря практически полному отсутствию искажений и собственных шумов.

Наконец, он устойчив к воздействию электромагнитных полей, что позволяет в условиях активной современной жизни без помех пользоваться мобильным телефоном и компьютером.

По способу настройки слуховые аппараты также делятся на два типа:

Непрограммируемый СА настраивается вручную, а громкость звучания по мере необходимости изменяет сам владелец посредством регулятора.

Параметры программируемого СА настраиваются при помощи компьютера, что обеспечивает более точное соответствие индивидуальным особенностям слуха пользователя.

Аппарат может сохранять и изменять запрограммированную настройку. Большинство программируемых СА имеют две и более программы с разными настройками: для прослушивания речи в шумной обстановке и музыки, программу комфортного звучания и пр.

Существует еще одна вспомогательная классификация слуховых аппаратов: по способу усиления они делятся на линейные и нелинейные.

Линейный СА усиливает входные сигналы независимо от их громкости на одну и ту же величину, зафиксированную при помощи регулятора усиления. В линейных аппаратах с выходным уровнем звукового давления, превышающим 130 дБ, предусматривается его ограничение (пик-клиппирование), которое вводится в действие при ощущении пациентом дискомфорта, вызванного громкими звуками.

Коэффициент усиления нелинейных СА, имеющих функцию автоматической регулировки усиления (АРУ) зависит от интенсивности входного сигнала. До тех пор, пока уровень входного сигнала не достигнет определенной величины, называемой порогом срабатывания АРУ, коэффициент усиления остается постоянным, как у линейного аппарата. При превышении входным сигналом порога срабатывания АРУ, который устанавливается слухопротезистом в соответствии с индивидуальной потерей слуха, коэффициент усиления аппарата снижается, что очень важно для протезирования сенсоневральной тугоухости с ФУНГом.

Технические характеристики слуховых аппаратов.

Цифровые алгоритмы подавления обратной связи. Обратной связью в слухопротезировании называется тот самый неприятный "свист" слухового аппарата, который возникает иногда при ношении слухового аппарата и очень мешает как самому пациенту, так и окружающим людям. Чаще всего это происходит при неправильно изготовленной отопластике или настройке аппарата, но иногда - вследствие чрезмерной подвижности нижней челюсти, особенностей строения слухового прохода, т.е. по независящим от человека причинам. Цифровые слуховые аппараты имеют специальные алгоритмы для выявления обратной связи еще до того момента, когда пациент или окружающие могут услышать "свист". При настройке такого аппарата специалист включает режим тестирования, и аппарат сам находит и запоминает ту частоту звука, которая вызывает обратную связь. В дальнейшем, при появлении малейших признаков обратной связи, аппарат самостоятельно отфильтровывает ту частоту, на которой происходит обратная связь. Современные алгоритмы подавления обратной связи адаптивные. Это значит что вышеописаные фильтры автоматически применяются только в тех случаях, когда они действительно нужны. В случаях, когда обратной связи более не наблюдается, фильтр, после повторной проверки, автоматически снимается.

Направленные микрофонные системы. Современный слуховой аппарат обладает направленной микрофонной системой, состоящей из 2-х или даже 3-х микрофонов. Направленная система позволяет выделять собеседника из шума или из числа других собеседников одним поворотом головы. Все дело в том, что такие системы более чувствительны к звукам, поступающим с фронтального направления (спереди). Звуки с других направлений звучат для пациента более приглушенно. Кроме того, это более физиологично для человека, т.к. нормальная ушная раковина, вследствие своей анатомической формы, обладает небольшой направленностью. Поворачивая голову в сторону собеседника, человек еще и концентрирует на нем свое внимание, что также является нормальным физиологическим рефлексом. Современные микрофонные системы обладают адаптивной направленностью. Система автоматически вычисляет направление основного источника шума и настраивает чувствительность микрофонной системы таким образом, чтобы восприятие шума было минимальным, а речи - максимальным.

Система Распознавания Речи. Работа Системы Распознавания Речи основана на различиях в структуре звуков речи и шума. Большинство источников шума представляют собой звуковой сигнал определенной частоты (например, шум холодильника, вентилятора - низкочастотный), не меняющий громкость с течением времени. Во время разговора же громкость речи постоянно изменяется: гласные звуки громче согласных, человек делает короткие паузы между словами и отдельными слогами и т. д. Таким образом, по колебаниям громкости (амплитуды звука) с течением времени можно отличить речь от шума. Это и делает процессор слухового аппарата.
Все аппараты, имеющие Систему Распознавания Речи, многоканальные, то есть весь спектр воспринимаемых ими звуков разделяется на несколько частотных диапазонов - каналов. Канал – это тот частотный диапазон, в котором СА производит свою независимую (независимую от другого канала) обработку звука (шумоподавление, выделение речи и т.д.). В каждом из каналов находится "датчик" - устройство, отличающее речь от шума по вышеупомянутым признакам.