Как строится атомная станция. Все АЭС России на карте

На левом берегу Саратовского водохранилища . Состоит из четырёх блоков ВВЭР-1000 , введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Ежегодно она вырабатывает более 30 миллиардов кВт·ч электроэнергии . В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х , станция могла бы сравняться с самой мощной в Европе Запорожской АЭС .

Балаковская АЭС работает в базовой части графика нагрузки Объединённой энергосистемы Средней Волги.

Белоярская АЭС

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах . В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно. БН-600 сдан в эксплуатацию в апреле - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Первые два энергоблока с водографитовыми канальными реакторами АМБ-100 и АМБ-200 функционировали в - и -1989 годах и были остановлены в связи с выработкой ресурса. Топливо из реакторов выгружено и находится на длительном хранении в специальных бассейнах выдержки, расположенных в одном здании с реакторами. Все технологические системы, работа которых не требуется по условиям безопасности, остановлены. В работе находятся только вентиляционные системы для поддержания температурного режима в помещениях и система радиационного контроля, работа которых обеспечивается круглосуточно квалифицированным персоналом.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа . Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена на севере Тверской области , на южном берегу озера Удомля и около одноимённого города .

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000 , электрической мощностью 1000 МВт, которые были введены в эксплуатацию в , , и 2011 годах .

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области , на берегу озера Имандра . Состоит из четырёх блоков ВВЭР-440 , введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.

Мощность станции - 1760 МВт.

Курская АЭС

Курская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Курчатов Курской области , на берегу реки Сейм . Состоит из четырёх блоков РБМК-1000 , введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС - одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт. Расположена рядом с городом Сосновый Бор Ленинградской области , на побережье Финского залива . Состоит из четырёх блоков РБМК-1000 , введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Нововоронежская АЭС

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска () выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Где в россии законсервировали АЭС?

Балтийская АЭС

АЭС в составе двух энергоблоков общей мощностью 2,3 ГВт строилась с 2010 года в Калининградской области, энергетическую безопасность которой она и была призвана обеспечить. Первый объект Росатома, на который планировалось допустить иностранных инвесторов - энергокомпании, заинтересованные в покупке излишков энергии, вырабатываемой АЭС. Стоимость проекта с инфраструктурой оценивалась в 225 млрд рублей. Строительство было заморожено в 2014 году в связи с возможными сложностями со сбытом электроэнергии за границу после обострения внешнеполитической ситуации.

В перспективе возможна достройка АЭС, в том числе с менее мощными реакторами.

Недостроенные АЭС, строительство которых возобновлять не планируется

Все эти АЭС были законсервированы в 1980-х - 1990-х гг. в связи с аварией на Чернобыльской АЭС, экономическим кризисом, последующим развалом СССР и тем, что они оказались на территории вновь образованных государств, которым такое строительство оказалось не по карману. Часть из стройплощадок этих станций на территории России может быть задействовано в строительстве новых АЭС после 2020 года. К таким АЭС относятся:

  • Башкирская АЭС
  • Крымская АЭС
  • Татарская АЭС
  • Чигиринская АЭС (ГРЭС) (осталась на Украине)

Также в то же время по соображениям безопасности под давлением общественного мнения было отменено строительство находившихся в высокой степени готовности атомных станций теплоснабжения и атомных теплоэлектроцентралей, предназначенных для подачи горячей воды в крупные города:

  • Воронежская АСТ
  • Горьковская АСТ
  • Минская АТЭЦ (осталась в Белоруссии, достроена как обычная ТЭЦ - Минская ТЭЦ-5)
  • Одесская АТЭЦ (осталась на Украине).
  • Харьковская АТЭЦ (осталась на Украине)

За пределами бывшего СССР по разным причинам не были достроены ещё несколько АЭС отечественных проектов:

  • АЭС Белене (Болгария
  • АЭС Жарновец (Польша) - строительство остановлено 1990 г. вероятнее всего по экономическим и политическим причинам, включая влияние общественного мнения после аварии Чернобыльской АЭС.
  • АЭС Синпхо (КНДР).
  • АЭС Хурагуа (Куба) - строительство прекращено в очень высокой степени готовности в 1992 году в связи с экономическими сложностями после прекращения помощи СССР.
  • АЭС Штендаль (ГДР , позднее Германия) - строительство отменено в высокой степени готовности с перепрофилированием в целлюлозно-бумажную фабрику в связи с отказом страны от строительства АЭС вообще.

Производство урана

Россия обладает разведанными запасами урановых руд, на 2006 год оцениваемыми в 615 тыс. тонн урана.

Основная уранодобывающая компания Приаргунское производственное горно-химическое объединение , добывает 93 % российского урана, обеспечивая 1/3 потребности в сырьё.

В 2009 году прирост производства урана составил 25 % в сравнении с 2008 годом .

Строительство реакторов

Динамика по количеству энергоблоков (шт)

Динамика по суммарной мощности (ГВт)

В России существует большая национальная программа по развитию атомной энергетики, включающей строительство 28 ядерных реакторов в ближайшие годы . Так, ввод первого и второго энергоблоков Нововоронежской АЭС-2 должен был состояться в 2013-2015 годах , однако перенесён минимум на лето 2016 года.

По данным на март 2016 года, в России строится 7 атомных энергоблоков, а также плавучая АЭС .

1 августа 2016 года было утверждено строительство 8 новых АЭС до 2030 года .

Строящиеся АЭС

Балтийская АЭС

Балтийская АЭС строится вблизи города Неман , в Калининградской области. Станция будет состоять из двух энергоблоков ВВЭР-1200 . Строительство первого блока планировалось завершить в 2017 году, второго блока - в 2019 году.

В середине 2013 года было принято решение о заморозке строительства .

В апреле 2014 года строительство станции было приостановлено .

Ленинградская АЭС-2

Прочие

Также прорабатываются планы постройки:

  • Кольской АЭС-2 (в Мурманской области)
  • Приморской АЭС (в Приморском крае)
  • Северской АЭС (в Томской области)

Возможно возобновление строительства на заложенных ещё в 1980-х годах площадках, но по обновлённым проектам:

  • Центральной АЭС (в Костромской области)
  • Южно-Уральская АЭС (в Челябинской области)

Международные проекты России в атомной энергетике

На начало 2010 года за Россией было 16 % на рынке услуг по строительству и эксплуатации

23 сентября 2013 года Россия передала Ирану в эксплуатацию АЭС «Бушер» .

По данным на март 2013 года, российская компания Атомстройэкспорт строит за рубежом 3 атомных энергоблока: два блока АЭС «Куданкулам » в Индии и один блок АЭС «Тяньвань » в Китае. Достройка двух блоков АЭС «Белене » в Болгарии отменена в 2012 году .

В настоящее время Росатому принадлежит 40 % мирового рынка услуг по обогащению урана и 17 % рынка по поставке ядерного топлива для АЭС . Россия имеет крупные комплексные контракты в области атомной энергетики с Индией , Бангладеш , Китаем , Вьетнамом , Ираном , Турцией ,Финляндией , ЮАР и с рядом стран Восточной Европы . Вероятны комплексные контракты в проектировании, строительстве атомных энергоблоков, а также в поставках топлива с Аргентиной , Белоруссией , Нигерией , Казахстаном , .. СТО 1.1.1.02.001.0673-2006. ПБЯ РУ АС-89 (ПНАЭ Г - 1 - 024 - 90)

В 2011 году российские атомные станции выработали 172,7 млрд кВт ч , что составило 16,6 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 161,6 млрд кВт·ч.

В 2012 году российские атомные станции выработали 177,3 млрд кВт ч, что составило 17,1 % от общей выработки в Единой энергосистеме России. Объём отпущенной электроэнергии составил 165,727 млрд кВт·ч.

В 2018 году выработка на АЭС России составила 196,4 млрд кВт ч, что составило 18,7% от общей выработки в Единой энергосистеме России.

Доля атомной генерации в общем энергобалансе России около 18 %. Высокое значение атомная энергетика имеет в европейской части России и особенно на северо-западе, где выработка на АЭС достигает 42 %.

После запуска второго энергоблока Волгодонской АЭС в 2010 году, председатель правительства России В. В. Путин озвучил планы доведения атомной генерации в общем энергобалансе России с 16 % до 20-30 % .

В разработках проекта Энергетической стратегии России на период до 2030 г. предусмотрено увеличение производства электроэнергии на атомных электростанциях в 4 раза.

За минувшие четверть века сменилось несколько поколений не только в нашем обществе. Сегодня строятся АЭС нового поколения. Новейшие российские энергоблоки теперь оснащаются только водо-водяными реакторами поколения 3+. Реакторы этого типа можно без преувеличения назвать самыми безопасными. За всё время работы реакторов не было ни одной серьезной аварии. АЭС нового типа по миру в сумме имеют уже больше 1000 лет стабильной и безаварийной деятельности.

Устройство и работа новейшего реактора 3+

Урановое топливо в реакторе заключено в циркониевые трубки, так называемые тепловыделяющие элементы, или ТВЭЛы. Они составляют реактивную зону самого реактора. Когда происходит извлечение из этой зоны поглотительных стержней, то в реакторе нарастает поток нейтронных частиц, а затем начинается самоподдерживающая цепная реакция деления. При этой связи урана освобождается большая энергия, которая разогревает ТВЭЛы. АЭС, оборудованная ВВЭР, работает по двухконтурной схеме. Сначала сквозь реактор проходит чистая вода, которую подали уже очищенной от разных примесей. Далее она проходит непосредственно через активную зону, где охлаждает и омывает собою ТВЭЛы. Такая вода нагревается, ее температура достигает 320 градусов по Цельсию, чтобы она осталась в жидком состоянии, необходимо ее держать под давлением 160 атмосфер! Потом горячая вода следует в парогенератор, отдавая теплоту. А жидкость второго контура после этого вновь проникает в реактор.

Следующие действия идут в соответствии с привычной нам ТЭЦ. Вода, находящаяся во втором контуре, в парогенераторе превращается, естественно, в пар, газообразное состояние воды вращает турбину. Этот механизм заставляет двигаться электрогенератор, вырабатывающий электроток. Сам реактор и парогенератор находится внутри герметичной бетонной оболочки. В генераторе пара вода первого контура, выходящая из реактора, никаким образом не взаимодействует с жидкостью из второго контура, идущей на турбину. Данная схема работы размещения реактора и парогенератора исключают проникновение радиационных отходов за пределы реакторного зала станции.

Об экономии денежных средств

Новая АЭС в России требует на затраты систем безопасности 40 % от общей стоимости самой станции. Основная доля средств закладывается на автоматику и конструкцию энергоблока, а также на оборудование систем безопасности.

В основу обеспечения безопасности в АЭС нового поколения заложен принцип глубокоэшелонированной защиты, основанной на использовании системы из четырех физических барьеров, препятствующих выходу радиоактивных веществ.

Первый барьер

Он представлен в виде прочности самих таблеток с урановым топливом. После так называемого процесса спекания в печи при температуре 1200 градусов таблетки приобретают высокопрочные динамические свойства. Они не разрушается под воздействием высоких температур. Они помещаются в циркониевые трубки, образующие оболочку тепловыделяющих элементов. В один такой тепловыделяющий элемент вводится автоматом более 200 таблеток. Когда они заполняют циркониевую трубку полностью, то робот-автомат вводит пружину, прижимающую их до отказа. Затем автомат откачивает воздух, а потом и вовсе запечатывает ее.

Второй барьер

Представляет собой герметичность оболочки из циркония Оболочка ТВЭЛа выполнена из циркония ядерной чистоты. Она обладает повышенной коррозионной стойкостью, способна сохранять форму при температуре более 1000 градусов. Контроль качества изготовления проводится на всех этапах его производства. В результате многоступенчатых проверок качества возможность разгерметизации тепловыделяющих элементов крайне низка.

Третий барьер

Выполнен он в виде прочного стального корпуса реактора, толщина которого равна 20 см. Он рассчитан на рабочее давление в 160 атмосфер. Корпус реактора обеспечивает предотвращение выхода продуктов деления под защитную оболочку.

Четвертый барьер

Это герметичная защитная оболочка самого реакторного зала, имеющая еще одно название - контаймент. Он состоит всего из двух частей: внутренняя и внешняя оболочки. Внешняя оболочка обеспечивает защиту от всех внешних воздействий как природного, так и техногенного характера. Толщина внешней оболочки - 80 см высокопрочного бетона.

Внутренняя оболочка с толщиной бетонной стены равна 1 метру 20 см. Ее покрывают сплошным стальным 8-миллиметровым листом. Кроме того, ее стяжку усиливают специальные системы тросов, натянутых внутри самой оболочки. Иными словами, это кокон из стали, который стягивает бетон, усиливая его прочность в три раза.

Нюансы защитного покрытия

Внутренняя защитная оболочка АЭС нового поколения выдерживает давление в 7 килограмм на квадратный сантиметр, а также высокую температуру до 200 градусов Цельсия.

Между внутренней и внешней оболочками существует межоболочное пространство. Оно имеет систему фильтрации газов, которые попадают из реакторного отделения. Мощнейшая железобетонная оболочка сохраняет герметичность при землетрясении в 8 баллов. Выдерживает падение самолёта, вес которого рассчитали до 200 тонн, а также позволяет выдержать экстремальные внешние воздействия, такие как смерч и ураганы, при максимальной скорости ветра 56 метров в секунду, вероятность которых возможна один раз в 10 000 лет. А еще такая оболочка защищает от воздушной ударной волны с давлением во фронте до 30 кПа.

Особенность АЭС поколения 3+

Система из четырех физических барьеров глубокоэшелонированной защиты исключает радиоактивные выбросы за пределы энергоблока в случае чрезвычайных ситуаций. Во всех реакторах ВВЭР существуют пассивные и активные системы безопасности, сочетание которых гарантирует решение трех основных задач, возникающих при аварийной ситуации:

  • остановка и прекращение ядерных реакций;
  • обеспечение постоянного отвода тепла от ядерного топлива и самого энергоблока;
  • предотвращение выхода радионуклидов за пределы контаймента в случае аварийных ситуаций.

ВВЭР-1200 в России и мире

Безопасными стали АЭС нового поколения Японии после аварии на АЭС «Фукусима-1». Японцы тогда решили больше не получать энергию при помощи мирного атома. Однако новое правительство вернулось к ядерной энергетике, так как экономика страны понесла большие убытки. Отечественные инженеры с физиками-ядерщиками начали разрабатывать безопасную АЭС нового поколения. В 2006 году мир узнал о новой сверхмощной и безопасной разработке отечественных ученых.

В мае 2016 года завершилась грандиозная стройка в черноземном регионе и успешное окончание тестирования 6-го энергоблока на Нововоронежской АЭС. Новая система работает стабильно и эффективно! Впервые при возведении станции инженеры спроектировали всего одну и самую высокую в мире градирню для охлаждения воды. В то время как ранее строили две градирни на один энергоблок. Благодаря подобным разработкам удалось сэкономить финансовые средства и сохранить технологии. Еще год на станции будут проводиться работы различного характера. Это необходимо для того, чтобы постепенно ввести в эксплуатацию оставшееся оборудование, так как запускать все и сразу нельзя. Впереди у Нововоронежской АЭС - возведение 7-го энергоблока, оно будет длиться еще два года. После этого Воронеж станет единственным регионом, который реализовал такой масштабный проект. Ежегодно Воронеж посещают различные делегации, изучающие Такая отечественная разработка оставила позади Запад и Восток в сфере энергетики. Сегодня различные государства хотят внедрить, а некоторые уже используют такие АЭС.

Новое поколение реакторов трудится на благо Китая в Тяньване. Сегодня строятся такие станции в Индии, Беларуси, Прибалтике. В Российской Федерации внедряют ВВЭР-1200 в Воронеже, Ленинградской области. В планах - возвести подобное сооружение в энергетической отрасли в республике Бангладеш и Турецком государстве. В марте 2017 года стало известно, что Чехия активно сотрудничает с «Росатомом» для постройки такой же станции на своей земле. В России планируют возводить АЭС (новое поколение) в Северске (Томская область), Нижнем Новгороде и Курске.

Перечитав собственную заметку на эту же тему, признаю – был слишком эмоционален. Просто новость была совершенно неожиданной лично для меня: я был абсолютно уверен, что планы Росатома не протиснутся сквозь сито требований по сокращению бюджетных расходов, действующее на уровне Правительства РФ.

И я чрезвычайно признателен Константину Пулину, который взял на себя труд свести в подробную «справку» все то, то намечено Росатомом и одобрено Правительством РФ. Еще приятнее – то, то Константин согласился начать сотрудничество с нашим сайтом. Надеюсь, что дебют вам понравится и, разумеется, на то, что сотрудничество будет продолжено. Ваши оценки этой статьи и комментарии к ней – весьма ожидаемы и командой сайта, и Константином. Так что – будьте добры!..

(c) Шеф-редактор сайт

Новые АЭС

Дмитрий Медведев 01.08. 2016 своим распоряжением Председателя Правительства РФ № 1634-р утвердил план строительства восьми новых АЭС. Согласно распоряжению, до 2030 года в России будут построены восемь крупных АЭС

  1. Кольская АЭС-2, 1 ВВЭР-600. Итого 675 МВт.
  2. Центральная АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  3. Смоленская АЭС-2, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  4. Нижегородская АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  5. Татарская АЭС, 1 ВВЭР-ТОИ, по 1255 МВт. Итого 1255 МВт.
  6. Белоярская АЭС, 1 БН-1200. Итого 1200 МВт.
  7. Южноуральская АЭС, 1 БН-1200. Итого 1200 МВт.
  8. Северская АЭС, 1 БРЕСТ-300. Итого 300 МВт.

Все 8 АЭС – это блоки новых типов АЭС, ранее не строившихся в России! И это – на фоне того, что новинки атомной энергетики в нашей стране – не новость, а нечто, становящееся потихоньку привычным. Буквально на днях, 5 августа, выдал в сеть первую электроэнергию новый самый мощный в России и не имеющий аналогов в мире ВВЭР-1200. В 2014 году был построен «быстрый» реактор с натриевым теплоносителем БН-800, 15 апреля 2016 были закончены его испытания на мощности в 85% от номинала (730 Мвт), осенью его выведут уже на 100% и тоже присоединят к единой энергетической системе страны.

Итого 6 новых типов АЭС менее чем за 20 лет: БН-800, ВВЭР-1200, ВВЭР-600, ВВЭР-1300-ТОИ, БРЕСТ-ОД-300, БН-1200! Если думаете, что это так просто разрабатывать и строить новые типы АЭС, то посмотрите, к примеру, на США. Там за 40 лет разработали всего один новый проект реактора – АР1000. Но разработка и строительство, как говорили в Одессе, две большие разницы: США строят АР1000 в Китае с 2008 года, регулярно увеличивая сметную стоимость, но пока так и не построили. Для сравнения: ВВЭР-1200 также начали строить в 2008 году, но уже подсоединили к ЕЭС России 5 августа 2016 года.

Прим. БA: ВВЭР-600 – не что-то старое, это тоже новинка: реактор постфукусимской технологии поколения III+ средней мощности. Потребность в атомных энергоблоках средней мощности существует в регионах со слабо развитой сетевой инфраструктурой, в удаленных районах, куда доставка топлива извне затруднена. Для выхода России на рынок строительства АЭС средней мощности за рубежом в РФ надо сначала построить соответствующий первый, так называемый референтный (эталонный), энергоблок. Кольский полуостров выбран для размещения нового энергоблока потому, что на его территории будут реализованы крупные инвестиционные проекты.

Мощность новых и строящихся АЭС

8 новых АЭС и 11 энергоблоков – это много или мало? Давайте посчитаем. Мощность 8 новых АЭС равна 675 + 2510 + 2510 + 2510 + 1255 + 1200 + 1200 + 300 = 12 160 МВт

“На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт.” С Обнинской и Сибирской АЭС, которые выдавали 6 и 500 МВт, и которые были закрыты в 2002 и 2008 гг, было 20 748 МВт.

“На конец 2015 года в России на 10 действующих АЭС эксплуатировалось 35 энергоблоков общей мощностью 27 206 МВт”.

“С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт.”

Однако данные подсчёты не учитывают уже строящиеся АЭС в России и те, которые будут выводиться из эксплуатации.

Уже строящиеся АЭС:

  1. Балтийская АЭС, ВВЭР-1200. Итого 1200 МВт. Строительство приостановлено. Поэтому пока не учитываем.
  1. Ленинградская АЭС-2, 4 ВВЭР-1200 по 1170 МВт. Итого 4680 МВт.
  1. Нововоронежская АЭС, 2 ВВЭР-1200. Итого 2400 МВт. (Первый ВВЭР-1200 уже построен и дал электроэнергию для ЕЭС страны 5 августа, однако в статистике за 2015 год его ещё нет).
  1. Ростовская АЭС, ВВЭР-1000, 1100 МВт. Итого 1100 МВт.

Итого 4680 + 2400+ 1100 = 8 180 МВт. Из них 5,84 ГВт мощностей будут сданы с 2016 по 2020 гг. (1,2 ГВт уже сданы 5 августа).

  1. Курская АЭС-2, 4 блока ВВЭР-ТОИ по 1255 МВт. Итого 5 010 МВт. Данная АЭС находится на самых ранних этапах строительства. Поэтому она уже не попала в распоряжение Медведева, но ещё не попала в список строящихся АЭС в википедию 🙂 Блоки будут сдаваться в 2021, 2023, 2026 и 2029 гг.
  1. Плавучая АЭС «Ломоносов», которую ждет Певек – две реакторные установки ледокольного типа КЛТ-40С по 35 Мвт электрической мощности. Итого – 70 Мвт.

8 новых АЭС также начнут сдаваться после 2020 года вплоть до 2030 года. (Т.к. АЭС менее 5 лет не строятся). Сравниваем: за 5 ближайших лет будет сдано 5,84 ГВт и 5 энергоблоков. А с 2021 года по 2030 год будет построено ещё как минимум 19,51 ГВт мощностей и 17 энергоблоков. Почему “как минимум”? Потому что вероятна постройка двух блоков ВВЭР-600 на Кольской АЭС-2, а не одного. Надеюсь, что будет достроена Балтийская АЭС из 1 или 2 блоков. Возможно, что будет построена Приморская АЭС. Ранее она включалась в планы развития ДВ . И ещё два блока ВВЭР-ТОИ Нововоронежской АЭС числятся “в проекте”. Есть проекты Тверской и Башкирской АЭС.

Росатом с 2014 сдавал и до 2020 года будет сдавать до 2020 по одному блоку АЭС в год в России. С 2021 по 2030 гг., с учётом распоряжения Медведева, будет построено минимум 17 блоков АЭС. Или 1,7 блоков в год. В то же время уже сейчас вне самой России Росатом сдаёт по 4 блока в год. Значит, Росатом вполне может строить больше АЭС в России, а не за рубежом, если понадобится. Как говорится, росла бы экономика и население, способные запросить побольше электроэнергии, Росатом к этому вполне готов. Как видим, планы вполне реалистичные с учётом текущих мощностей Росатома и роста мощностей в будущем.

Вывод: как по количеству блоков, так и по генерируемой мощности Медведев подписал абсолютно реалистичный, он же минимальный, план ввода АЭС. Приоритет отдаётся строительству и обкатке в России новых типов реакторов. Принцип референтности в атомной энергетике остается одним из – сначала покажи, как это работает и насколько это безопасно, на собственном примере. Будет реализован план, заявленный Постановлением 1634-р – будет и экспорт по всему миру обкатанных в России АЭС, как это было до сих пор.

Выводимые из эксплуатации АЭС с 2016 по 2030 гг

Однако АЭС не только строятся, но и закрываются по разным причинам – срок эксплуатации всегда конечен. Смотрим список выводимых из эксплуатации российских АЭС:

  1. Белоярская АЭС, 1 блок 600 МВт. По плану БН-600 будет закрыт в 2025 году. Срок эксплуатации с 1980 года составит 45 лет. Ему на смену придёт БН-1200 примерно в том же году. Итого «минус» 600 МВт.
  2. Билибинская АЭС. 4 реактора ЭГП-6 по 12 МВт. Итого «минус» 48 МВт. Вывод из эксплуатации с 2019 по 2021 гг Срок эксплуатации с 1974-1976 гг также составит 45 лет.
  3. Кольская АЭС. 4 реактора ВВЭР-440. Итого 1760 МВт. Вывод из эксплуатации в 2018, 2019, 2026, 2029 гг. Срок эксплуатации 44-45 лет. На смену пока что подписан только 1 блок Кольской АЭС-2 на 675 МВт, но предполагается, что когда-нибудь будет и второй блок ВВЭР-600.
  4. Курская АЭС. 4 блока РБМК по 1000 МВт. Итого минус 4 000 МВт. Однако “По мере исчерпания ресурса энергоблоков Курской АЭС их мощность будет замещена блоками Курской АЭС-2.
  5. Ленинградская АЭС. 4 реактора РБМК по 1000 МВт. На смену первым двум реакторам уже строятся два реактора ВВЭР-1200. Остальные два блока заменят ещё двумя блоками ВВЭР-1200 на ЛАЭС-2. Итого «минус» 4000 МВт. Срок эксплуатации 44-45 лет. Однако уже сейчас предельная безопасная мощность 1 блока не 1 000 МВт, а 800 МВт. (ссылка ниже по тексту). Таким образом, если считать по-честному, то на конец 2015 года мощности АЭС России составляли не 27 206 МВт, а 27 006 МВт. И выводиться будет 3 800 МВт, а не 4 000 МВт.
  6. Нововоронежская АЭС. 2 блока ВВЭР-440 по 417 МВт. Итого «минус» 834 МВт. Закрытие в 2016-2017 гг. Срок эксплуатации – 44 года.
  7. Смоленская АЭС. До 2030 года будет выведено из эксплуатации 2 блока из 3. Им на смену придут 2 блока Смоленской АЭС-2 ВВЭР-ТОИ. Вероятный срок эксплуатации – 45 лет. Итого «минус» 2000 МВт.

Итого: будет закрыт 21 энергоблок. Считаем выводимую из эксплуатации мощность: 600 + 48 + 1760 + 4000 + 3800 + 834 + 2000 = 13 042 МВт.

Теперь можно подбить окончательные цифры: За период с 2016 по 2030 гг. будет построено 22 энергоблока и 25,36 ГВт мощностей. За тот же период будет закрыт 21 энергоблок мощностью 13,042 ГВт. Для наглядности представляю цифры в виде таблицы:

27,006 ГВт на конец 2015 года. Плюс 5,84 ГВт до 2020 года. Плюс 19,52 ГВт до 2030 года. Минус 13 042 ГВт до 2030 года. Итого Россия будет иметь 39,324 ГВт установленной мощности к 2030 году на 36 энергоблоках на 14 АЭС. Это минимум 45,6%-ный рост генерации АЭС в России.

Добавляю график для наглядности:

На графике видно, что к 2030 году большинство мощностей АЭС будут те, которые построены после 1991 года. Если точно, то из реакторов общей мощностью 32,324 ГВт только 7 ГВт останутся от тех реакторов, которые построены до 1991 года. Минимум 45,6% рост не только потому, что энергоблоков, скорее всего, будет построено больше. Но и потому, что КИУМ АЭС в России растёт:

Выводы

  1. Из эксплуатации до 2025 года будут выведены старые типы АЭС: ЭГП-6, БН-600, ВВЭР-440. Срок эксплуатации составит 44-45 лет.
  1. РБМК-1000 будут выведены из эксплуатации в основном до 2030. В России было построено 11 блоков РБМК-1000 на трёх АЭС. На данный момент все они работают. До 2030 года будут закрыты 10 из 11 блоков РБМК-1000. Это все 4 блока Курской АЭС, 2 блока ЛАЭС и 2 Смоленской АЭС. Сколько прослужат РБМК-1000? Вряд ли срок службы составит менее 45 лет, но и 60 лет данные блоки тоже не прослужат, как новые ВВЭР. Вот коротко причины того, почему РБМК не прослужат так долго: “Первый заместитель главы концерна Владимир Асмолов в июне рассказывал в интервью порталу AtomInfo.Ru, что деградация графита должна была начаться через 40-45 лет эксплуатации. Первый энергоблок ЛАЭС, введенный в 1973 году, уже достиг этого возраста, но на нем проблемы с графитом начались раньше. Сейчас, как отмечал господин Асмолов, мощность блока уже снижена до 80% (то есть с 1 ГВт до 800 МВт), “чтобы дать возможность блоку проработать до появления замещающих мощностей” … “Физический запуск первого энергоблока ЛАЭС-2 намечен уже на май 2017-го года. Начнется первая выработка электроэнергии по сниженным показателям. В промышленную эксплуатацию блок будет запущен 1 января 2018 года Таким образом, замещающие мощности ЛАЭС-2 появятся в 2018 году. Тогда же, в 2018 году, прослужив 45 лет, работая уже на пониженной мощности, первый блок РБМК-1000 будет закрыт. Те же проблемы будут и у других блоков РБМК-1000.
  1. В полном составе до 2030 года останутся работать все ВВЭР-1000. Первый ВВЭР-1000/187 был построен в 1981 году на Нововоронежской АЭС и планируется к закрытию только в 2036 году. Ожидаемый срок службы – 55 лет. Для более новых ВВЭР-1000/320 срок будет продлён до 60 лет. Например, Балаковская АЭС: “физический пуск энергоблока №1 Балаковской АЭС состоялся 12 декабря 1985 года” “Срок действия новой лицензии – до 18 декабря 2045 года.” Это означает, что все блоки ВВЭР-1000, за исключением первого, будут служить, как минимум, до 2040 года.
  1. В 2016-2030 гг. России предстоит закрыть 13,042 ГВт мощностей АЭС. При том, что с 1991 по 2015 гг мощности уменьшились всего на 706 МВт. (6 – Обнинская АЭС, 500 – Сибирская, и на 200 МВТ – 1 блок ЛАЭС) С 2031 по 2040 гг. будет выведено всего 2 ГВт мощностей АЭС. Это РБМК-1000, самый последний, и один ВВЭР-1000, самый первый 🙂
  1. Однако Россия собирается с успехом пройти этот сложный период. Во-первых, Россия подошла к данному периоду с новыми разработанными типами АЭС – ВВЭР-1200, ВВЭР-ТОИ. Разрабатываются БН-1200 и БРЕСТ-ОД-300. И даже новый “урезанный” ВВЭР-600 не стоит сбрасывать со счетов, т.к. данные АЭС средней мощности имеют хороший экспортный потенциалю С 2016 по 2030 гг. будет введено минимум 25,36 ГВт мощностей! Это почти столько же, сколько было построено за всё время в СССР/России и имелось в эксплуатации на конец 2015 года!
  1. “Выработка электроэнергии в России в 2015 году составила 1049,9 млрд. кВт-ч”. “ АЭС в 2015 году выработано 195,0 млрд. кВт-ч”. Можно ожидать, что 45,6%-ный рост мощностей АЭС даст ~50% рост генерации электроэнергии АЭС. Т.е. можно ожидать 300 млрд. квт-ч генерации АЭС к 2030 году в России. Это дешёвая энергия, которая даст России преимущество перед другими странами.
  1. С 2030 года у Росатома и России ожидается “Золотой Век”, связанный с массовым строительством прорывных АЭС ЗЯТЦ типа – БН и БРЕСТ. При этом закрытие старых АЭС никак не будет тянуть назад.

Госкорпорация «Росатом» осуществляет масштабную программу сооружения АЭС как в Российской Федерации, так и за рубежом. В настоящее время в России осуществляется строительство 6 энергоблоков. Портфель зарубежных заказов включает 36 блоков. Ниже приведена информация о некоторых из них.


Строящиеся АЭС в России

Курская АЭС-2 сооружается как станция замещения взамен выбывающих из эксплуатации энергоблоков действующей Курской АЭС. Ввод в эксплуатацию двух первых энергоблоков Курской АЭС-2 планируется синхронизировать с выводом из эксплуатации энергоблоков №1 и №2 действующей станции. Застройщик - технический заказчик объекта – АО «Концерн Росэнергоатом». Генеральный проектировщик - АО ИК «АСЭ», генеральный подрядчик - АСЭ (Инжиниринговый дивизион Госкорпорации «Росатом»). В 2012 году были проведены предпроектные инженерные и экологические изыскания по выбору наиболее предпочтительной площадки размещения четырёхблочной станции. На основании полученных результатов выбрана площадка Макаровка, расположенная в непосредственной близости от действующей АЭС. Церемония заливки «первого бетона» на площадке Курской АЭС-2 состоялась в апреле 2018 года.

Ленинградская АЭС-2

Расположение: близ г. Сосновый Бор (Ленинградская обл.)

Тип реактора: ВВЭР-1200

Количество энергоблоков: 2 – в стадии строительства, 4 – по проекту

Станция строится на площадке Ленинградской АЭС. Проектировщик - АО «АТОМПРОЕКТ», генеральный подрядчик - АО «КОНЦЕРН ТИТАН-2», функции заказчика-застройщика выполняет ОАО «Концерн «Росэнергоатом». Проект будущей АЭС в феврале 2007 года получил положительное заключение Главгосэкспертизы РФ. В июне 2008 года и июле 2009 года Ростехнадзор выдал лицензии на сооружение энергоблоков Ленинградской АЭС-2 - головной атомной электростанции по проекту «АЭС-2006». Проект ЛАЭС-2 с водо-водяными энергетическими реакторами мощностью по 1200 МВт каждый отвечает всем современным международным требованиям по безопасности. В нем применены четыре активных независимых канала систем безопасности, дублирующие друг друга, а также комбинация пассивных систем безопасности, работа которых не зависит от человеческого фактора. В составе систем безопасности проекта - устройство локализации расплава, система пассивного отвода тепла из-под оболочки реактора и система пассивного отвода тепла от парогенераторов. Расчетный срок службы станции – 50 лет, основного оборудования – 60 лет. Физический пуск энергоблока №1 Ленинградской АЭС-2 состоялся в декабре 2017 года, энергетический пуск – в марте 2018 года. Блок был введен в промышленную эксплуатацию 27 ноября 2018 года. Ведется сооружение энергоблока №2.

Нововоронежская АЭС-2

Расположение: близ г. Нововоронеж (Воронежская обл.)

Тип реактора: ВВЭР-1200

Количество энергоблоков: 2 (1 - в стадии сооружения)

Нововоронежская АЭС-2 строится на площадке действующей станции, это самый масштабный инвестиционный проект на территории Центрально-Черноземного региона. Генеральный проектировщик - АО «Атомэнергопроект». Генеральным подрядчиком выступает АСЭ (Инжиниринговый дивизион Госкорпорации «Росатом»). Проект предусматривает использование реакторов ВВЭР проекта «АЭС-2006» со сроком эксплуатации 60 лет. Проект «АЭС-2006» базируется на технических решениях проекта «АЭС-92», получившего в апреле 2007 года сертификат соответствия всем техническим требованиям европейских эксплуатирующих организаций (EUR) к АЭС с легководными реакторами нового поколения. Все функции безопасности в проекте «АЭС-2006» обеспечиваются независимой работой активных и пассивных систем, что является гарантией надежной работы станции и ее устойчивости к внешним и внутренним воздействиям. Первая очередь Нововоронежской АЭС-2 будет включать два энергоблока. Энергоблок №1 Нововоронежской АЭС-2 с реактором ВВЭР-1200 поколения «3+» был сдан в промышленную эксплуатацию 27 февраля 2017 года. В феврале 2019 года на энергоблоке №2 Нововоронежской АЭС-2 начался этап физического пуска.

Плавучая АЭС «Академик Ломоносов»

Расположение: г. Певек (Чукотский автономный округ)

Тип реактора: КЛТ-40С

Количество энергоблоков: 2

Плавучий энергетический блок (ПЭБ) «Академик Ломоносов» проекта 20870 - это головной проект серии мобильных транспортабельных энергоблоков малой мощности. ПЭБ предназначен для работы в составе плавучей атомной теплоэлектростанции (ПАТЭС) и представляет собой новый класс энергоисточников на базе российских технологий атомного судостроения. Это уникальный и первый в мире проект мобильного транспортабельного энергоблока малой мощности. Он предназначен для эксплуатации в районах Крайнего Севера и Дальнего Востока и его основная цель – обеспечить энергией удаленные промышленные предприятия, портовые города, а также газовые и нефтяные платформы, расположенные в открытом море. ПАТЭС разработана с большим запасом прочности, который превышает все возможные угрозы и делает ядерные реакторы неуязвимыми для цунами и других природных катастроф. Станция оснащена двумя реакторными установками КЛТ-40С, которые способны вырабатывать до 70 МВт электроэнергии и 50 Гкал/ч тепловой энергии в номинальном рабочем режиме, что достаточно для поддержания жизнедеятельности города с населением около 100 тыс. человек. Кроме того, такие энергоблоки могут работать в островных государствах, на их базе может быть создана мощная опреснительная установка.

Плавучий энергоблок (ПЭБ) сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО «Севмаш», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока. После завершения швартовных испытаний в апреле-мае 2018 года ПЭБ «Академик Ломоносов» была транспортирована с завода в г. Мурманск, на площадку ФГУП «Атомфлот». 3 октября 2018 года на ПАТЭС завершена загрузка ядерного топлива в реакторные установки. 6 декабря 2018 года на плавучем энергоблоке состоялся энергетический пуск первого реактора. В 2019 году он будет доставлен по Северному морскому пути к месту работы и подключен к береговой инфраструктуре, сооружаемой в порту г. Певека. Строительство береговых сооружений было начато осенью 2016 года, оно осуществляется ООО «Трест Запсибгидрострой», которое уже имеет опыт строительства аналогичных объектов в арктических условиях. Все работы по сооружению береговых сооружений на площадке в Певеке работы ведутся в графике.

ПАТЭС предназначена для замещения выбывающих мощностей Билибинской АЭС, которая расположена в Чукотском автономном округе и на сегодняшний день вырабатывает 80% электроэнергии в изолированной Чаун-Билибинской энергосистеме. Первый энергоблок Билибинской АЭС планируется окончательно остановить в 2019 году. Вся станция, как ожидается, будет остановлена в 2021 году.

Росатом уже работает над вторым поколением ПАТЭС - оптимизированным плавучим энергоблоком (OFPU), который будет меньше своего предшественника. Его предполагается оснастить двумя реакторами типа RITM-200M мощностью 50 МВт каждый.

Строящиеся АЭС за рубежом

АЭС «Аккую» (Турция)

Расположение: близ г. Мерсин (провинция Мерсин)

Тип реактора: ВВЭР-1200
Количество энергоблоков: 4 (в стадии сооружения)


Проект первой турецкой АЭС включает в себя четыре энергоблока с самыми современными реакторами российского дизайна ВВЭР-1200 общей мощностью 4800 мегаватт.

Это серийный проект атомной электростанции на базе проекта Нововоронежской АЭС-2 (Россия, Воронежская область), расчетный срок службы АЭС "Аккую"– 60 лет. Проектные решения станции АЭС "Аккую" отвечают всем современным требованиям мирового ядерного сообщества, закрепленным в нормах безопасности МАГАТЭ и Международной консультативной группы по ядерной безопасности и требованиям Клуба EUR. Каждый энергоблок будет оснащен самыми современными активными и пассивными системами безопасности, предназначенными для предотвращения проектных аварий и/или ограничения их последствий. Межправительственное соглашение РФ и Турции по сотрудничеству в сфере строительства и эксплуатации атомной электростанции на площадке "Аккую" в провинции Мерсин на южном побережье Турции было подписано 12 мая 2010 года. Генеральный заказчик и инвестор проекта - АО "Аккую Нуклеар" (AKKUYU NÜKLEER ANONİM ŞİRKETİ, компания, специально учрежденная для управления проектом), генеральный проектировщик станции - АО "Атомэнергопроект", генеральный подрядчик строительства - АО "Атомстройэкспорт" (обе входят в инжиниринговый дивизион Росатома). Техническим заказчиком является ОАО «Концерн Росэнергоатом», научный руководитель проекта - ФГУ НИЦ «Курчатовский институт», консультант по вопросам лицензирования – ООО «ИнтерРАО - УорлиПарсонс», АО «Русатом Энерго Интернешнл» (АО «РЭИН») - девелопер проекта и мажоритарный акционер "Аккую Нуклеар". Основной объем поставок оборудования и высокотехнологичной продукции для реализации проекта приходится на российские предприятия, проект также предусматривает максимальное участие турецких компаний в строительных и монтажных работах, а также компаний из других стран. Впоследствии турецкие специалисты будут привлекаться к участию в эксплуатации АЭС на всех этапах ее жизненного цикла. Согласно межправительственному соглашению от 12 мая 2010 года, турецкие студенты проходят обучение в российских ВУЗах по программе подготовки специалистов атомной энергетики. В декабре 2014 года Министерство окружающей среды и градостроительства Турции одобрило Отчет по оценке воздействия на окружающую среду (ОВОС) АЭС "Аккую". Церемония по закладке фундамента морских сооружений АЭС прошла в апреле 2015 года. 25 июня 2015 года Управление по регулированию энергетического рынка Турции выдало АО "Аккую Нуклеар" предварительную лицензию на генерацию электроэнергии. 29 июня 2015 года с турецкой компанией "Дженгиз Иншаат" был подписан контракт на проектирование и строительство морских гидротехнических сооружений атомной станции. В феврале 2017 года Турецкое агентство по атомной энергии (ТАЕК) одобрило проектные параметры площадки АЭС "Аккую". 20 октября 2017 года АО "Аккую Нуклеар" получила от ТАЕК ограниченное разрешение на строительство, являющееся важным этапом на пути к получению лицензии на строительство АЭС. 10 декабря 2017 года на площадке АЭС «Аккую» состоялась торжественная церемония начала строительства в рамках ОРС. В рамках ОРС выполняются строительно-монтажные работы на всех объектах атомной электростанции, за исключением зданий и сооружений, относящихся к безопасности «ядерного острова». АО "Аккую Нуклеар" плотно сотрудничает с турецкой стороной по вопросам лицензирования. 3 апреля 2018 года состоялась торжественная церемония заливки "первого бетона".

Белорусская АЭС (Беларусь)

Расположение: город Островец (Гродненская область)

Тип реактора: ВВЭР-1200

Количество энергоблоков: 2 (в стадии сооружения)

Белорусская АЭС - первая в истории страны атомная электростанция, крупнейший проект российско-белорусского сотрудничества. Строительство АЭС ведется в соответствии с Соглашением между правительствами Российской Федерации и Республики Беларусь, заключенным в марте 2011 года, на условиях полной ответственности генерального подрядчика («под ключ»). Станция расположена в 18 км от г. Островец (Гродненская область). Она сооружается по типовому проекту поколения 3+, полностью соответствующему всем «постфукусимским» требованиям, международным нормам и рекомендациям МАГАТЭ. Проект предусматривает сооружение двухблочной АЭС с реакторами ВВЭР-1200 общей мощностью 2400 МВт. Генеральный подрядчик строительства – Инжиниринговый дивизион Госкорпорации «Росатом» (АСЭ). В настоящее время на основных объектах пусковых комплексов строящихся энергоблоков Белорусской АЭС ведутся тепломонтажные и электромонтажные работы в соответствии с утвержденным совместно графиком. На энергоблоке №1 завершен монтаж основного оборудования реакторного и машинного залов, продолжается этап полномасштабных пуско-наладочных работ. На энергоблоке №2 ведется монтаж основного оборудования реакторного зала. Строительство этой станции обещает установить рекорд по степени вовлеченности в работу белорусских специалистов. В проекте сооружения Белорусской АЭС задействованы 34 подрядные организации, в том числе свыше 20 белорусских. После ввода в промышленную эксплуатацию атомная электростанция в Островце будет вырабатывать около 25% необходимой Беларуси электроэнергии.

АЭС «Бушер» (Иран)

Расположение: близ г. Бушер (провинция Бушир)

Тип реактора: ВВЭР-1000

Количество энергоблоков: 3 (1 – построен, 2 - в стадии сооружения)


АЭС «Бушер» – первая в Иране и на всем Ближнем Востоке атомная электростанция. Строительство было начато в 1974 году немецким концерном Kraftwerk Union A.G. (Siemens/KWU) и приостановлено в 1980 году из-за решения германского правительства присоединиться к американскому эмбарго на поставки оборудования в Иран. Между Правительством Российской Федерации и Правительством Исламской Республики Иран 24 августа 1992 года было подписано соглашение о сотрудничестве в области мирного использования атомной энергии, и 25 августа 1992 года заключено соглашение о сооружении атомной электростанции в Иране. Строительство АЭС было возобновлено после длительной консервации в 1995 году. Российским подрядчикам удалось осуществить интеграцию российского оборудования в строительную часть, выполненную по немецкому проекту. Электростанция была подключена к электрической сети Ирана в сентябре 2011 года, в августе 2012 года энергоблок №1 вышел на полную рабочую мощность. 23 сентября 2013 года Россия состоялась официальная передача первого энергоблока АЭС «Бушер» мощностью 1000 МВт иранскому заказчику. В ноябре 2014 года был заключен ЕРС-контракт на сооружение «под ключ» еще двух энергоблоков АЭС (с возможностью расширения до четырех энергоблоков). Генеральный проектировщик – АО «Атомэнергопроект», генеральный подрядчик - АСЭ (Инжиниринговый дивизион Госкорпорации «Росатом»). Для сооружения выбраны реакторы ВВЭР-1000 проекта «АЭС-92». Церемония официального старта проекта «Бушер-2» состоялась 10 сентября 2016 года. В октябре 2017 года был дан старт строительно-монтажным работам на стройплощадке второй очереди станции.

АЭС "Эль-Дабаа" (Египет)

Расположение: область Матрух на берегу Средиземного моря

Тип реактора: ВВЭР-1200

Количество энергоблоков: 4

АЭС "Эль-Дабаа" – первая атомная станция в Египте, в области Матрух на берегу Средиземного моря. Она будет состоять из 4-х энергоблоков с реакторами ВВЭР-1200. В ноябре 2015 года Россия и Египет подписали Межправительственное соглашение о сотрудничестве в сооружении по российским технологиям и эксплуатации первой египетской АЭС. В соответствии с подписанными контрактами, Росатом осуществит поставку российского ядерного топлива на весь жизненный цикл атомной станции, проведет обучение персонала и окажет египетским партнерам поддержку в эксплуатации и сервисе АЭС «Эль Дабаа» на протяжении первых 10 лет работы станции. В рамках реализации проекта сооружения АЭС «Эль Дабаа» Росатом также окажет египетским партнерам помощь в развитии ядерной инфраструктуры, увеличит уровень локализации, обеспечит поддержку в повышении общественной приемлемости использования атомной энергетики. Подготовка будущих работников АЭС будет проходить как в России, так и в Египте. 11 декабря 2017 года в Каире генеральный директор Росатома Алексей Лихачёв и министр электроэнергетики и возобновляемых источников энергии Египта Мохаммед Шакер подписали акты о вступлении в силу коммерческих контрактов на сооружение этой атомной станции.

АЭС «Куданкулам» (Индия)

Расположение: близ г. Куданкулам (штат Тамил Наду)

Тип реактора: ВВЭР-1000

Количество энергоблоков: 4 (2 – в эксплуатации, 2 - в стадии сооружения)

АЭС «Куданкулам» сооружается в рамках выполнения Межгосударственного соглашения, заключенного в ноябре 1988 года, и дополнения к нему от 21 июня 1998 года. Заказчик – Индийская корпорация по атомной энергии (ИКАЭЛ). Сооружение АЭС «Куданкулам» ведет АО «Атомстройэкспорт», генеральный проектировщик - АО «Атомэнергопроект», генеральный конструктор - ОКБ «Гидропресс», научный руководитель - РНЦ «Курчатовский институт». Проект «АЭС-92», по которому сооружается станция, был разработан институтом «Атомэнергопроект» (Москва) на базе серийных энергоблоков, которые длительное время эксплуатируются в России и странах Восточной Европы. Первый блок АЭС "Куданкулам" был включен в национальную энергосистему Индии в 2013 году. Он является на сегодняшний день самым мощным в Индии и соответствует наиболее современным требованиям безопасности. 31 декабря 2014 года энергоблок №1 был запущен в коммерческую эксплуатацию, 10 августа 2016 года он был официально сдан в промышленную эксплуатацию. Физический пуск энергоблока №2 начался в мае 2016 года, 29 августа 2016 года состоялся его энергопуск. В апреле 2014 года РФ и Индия подписали генеральное рамочное соглашение о строительстве с участием России второй очереди (энергоблоки №3 и №4) АЭС, а в декабре - документы, позволяющие начать ее сооружение. 1 июня 2017 года, в ходе XVIII Ежегодного российско-индийского саммита, проходившего в Санкт–Петербурге, АСЭ (Инжиниринговый дивизион Госкорпорации «Росатом») и Индийская корпорация по атомной энергии подписали Генеральное рамочное соглашение по сооружению третьей очереди (энергоблоки №5 и №6) АЭС «Куданкулам». 31 июля 2017 года состоялось подписание контрактов между АО «Атомстройэкспорт» и Индийской корпорацией по атомной энергии на первоочередные проектные работы, рабочее проектирование и поставку основного оборудования для третьей очереди станции.

АЭС "Пакш-2" (Венгрия)

Расположение: близ г. Пакш (регион Тольна)

Тип реактора: ВВЭР-1200

Количество энергоблоков: 2

В настоящий момент на АЭС "Пакш", построенной по советскому проекту, работают четыре энергоблока с реакторами типа ВВЭР-440. Парламент Венгрии в 2009 году одобрил сооружение двух новых энергоблоков на АЭС. В декабре 2014 года Госкорпорация "Росатом" и компания MVM (Венгрия) подписали контракт на постройку новых блоков станции. В марте того же года Россия и Венгрия подписали соглашение о предоставлении кредита до 10 млрд евро на достройку АЭС "Пакш". Планируется, что на АЭС "Пакш-2" будут построены два блока (№5 и №6) проекта ВВЭР-1200. Генеральный проектировщик - АО "АТОМПРОЕКТ".

АЭС «Руппур» (Бангладеш)

Расположение: близ пос. Руппур (округ Пабна)

Тип реактора: ВВЭР-1200

Количество энергоблоков: 2

Межправительственное соглашение о сотрудничестве в строительстве первой бангладешской АЭС «Руппур» было подписано в ноябре 2011 года. Первый камень в начало строительства станции был заложен осенью 2013 года. В настоящее время осуществляется подготовительная стадия строительства энергоблоков №1 и №2. Генеральный подрядчик - АСЭ (Инжиниринговый дивизион Госкорпорации «Росатом»), место реализации проекта – площадка в 160 км от г. Дакка. Строительство осуществляется за счет кредита, предоставляемого Россией. Проект соответствует всем российским и международным требованиям безопасности. Его основной отличительной чертой является оптимальное сочетание активных и пассивных систем безопасности. 25 декабря 2015 года подписан генеральный контракт на сооружение АЭС «Руппур» в Бангладеш. Документ определяет обязательства и ответственность сторон, сроки и порядок реализации всех работ и прочие условия сооружения АЭС. Заливка первого бетона состоялась 30 ноября 2017 года. В настоящее время на стройплощадке станции выполняются строительно-монтажные работы.

АЭС «Тяньвань» (Китай)

Расположение: близ г. Ляньюнган (округ Ляньюньган, провинция Цзянсу)

Тип реактора: ВВЭР-1000 (4), ВВЭР-1200 (2)

Количество энергоблоков: 6 (4 - в эксплуатации, 2 – в стадии сооружения)

АЭС «Тяньвань» - самый крупный объект российско-китайского экономического сотрудничества. Первая очередь станции (энергоблоки №1 и №2) была построена российскими специалистами и находится в коммерческой эксплуатации с 2007 года. Ежегодно на первой очереди АЭС вырабатывается свыше 15 млрд кВт/час электроэнергии. Благодаря новым системам безопасности («ловушка расплава») она считается одной из самых современных станций в мире. Сооружение первых двух блоков АЭС «Тяньвань» вела российская компания в соответствии с российско-китайским межправительственным соглашением, подписанным в 1992 году.

В октябре 2009 года Госкорпорация «Росатом» и Китайская корпорация ядерной промышленности (CNNC) подписали протокол о продолжении сотрудничества в сооружении второй очереди станции (энергоблоки №3 и №4). Генеральный контракт был подписан в 2010 году и вступил в силу в 2011 году. Сооружение второй очереди АЭС осуществляется «Цзянсуской ядерной энергетической корпорацией» (JNPC). Вторая очередь стала логическим развитием первой очереди станции. Стороны применили целый ряд модернизаций. Проект был улучшен с технической и эксплуатационных сторон. Ответственность за проектирование ядерного острова была возложена на российскую сторону, за проектирование неядерного острова – на китайскую сторону. Строительные, монтажные и пуско-наладочные работы велись китайской стороной при поддержке российских специалистов.

Заливка «первого бетона» на энергоблоке №3 состоялась 27 декабря 2012 года, строительство блока №4 началось 27 сентября 2013 года. 30 декабря 2017 года состоялся энергетический пуск энергоблока №3 АЭС «Тяньвань». 27 октября 2018 года состоялся энергетический пуск блока №4 АЭС «Тяньвань». В настоящее время энергоблок №3 передан «Цзянсуской ядерной энергетической корпорацией» (JNPC) для прохождения 24-х месячной гарантийной эксплуатации, а энергоблок №4 22 декабря 2018 г. передан в коммерческую эксплуатацию.

8 июня 2018 года в Пекине (КНР) состоялось подписание стратегического пакета документов, определяющих основные направления развития сотрудничества между Россией и Китаем в сфере атомной энергетики на ближайшие десятилетия. В частности, будут построены два новых энергоблока с реакторами ВВЭР-1200 поколения «3+»: энергоблоки №7 и №8 АЭС «Тяньвань».