Исследование функции дыхания. Эластические свойства легких и грудной клетки (Стенки мелких бронхов) Чему равна растяжимость легких взрослого человека

– Какие параметры вдоха и выдоха измеряет аппарат ИВЛ?

Время (time), объём (volume), поток (flow), давление (pressure).

Время

– Что такое ВРЕМЯ?

Время – это мера длительности и последовательности явлений (на графиках давления, потока и объёма время бежит по горизонтальной оси «Х»). Измеряется в секундах, минутах, часах. (1час=60мин, 1мин=60сек)

С позиций респираторной механики нас интересует длительность вдоха и выдоха, поскольку произведение потокового времени вдоха (Inspiratory flow time) на поток равно объёму вдоха, а произведение потокового времени выдоха (Expiratory flow time) на поток равно объёму выдоха.

Временные интервалы дыхательного цикла (их четыре) Что такое «вдох – inspiration» и «выдох – expiration»?

Вдох это вход воздуха в легкие. Длится до начала выдоха. Выдох – это выход воздуха из легких. Длится до начала вдоха. Иными словами, вдох считается с момента начала поступления воздуха в дыхательные пути и длится до начала выдоха, а выдох – с момента начала изгнания воздуха из дыхательных путей и длится до начала вдоха.

Эксперты делят вдох на две части.

Inspiratory time = Inspiratory flow time + Inspiratory pause.
Inspiratory flow time – временной интервал, когда в легкие поступает воздух.

Что такое «инспираторная пауза» (inspiratory pause или inspiratory hold)? Это временной интервал, когда клапан вдоха уже закрыт, а клапан выдоха еще не открыт. Хотя в это время поступления воздуха в легкие не происходит, инспираторная пауза является частью времени вдоха. Так договорились. Инспираторная пауза возникает, когда заданный объём уже доставлен, а время вдоха ещё не истекло. Для спонтанного дыхания – это задержка дыхания на высоте вдоха. Задержка дыхания на высоте вдоха широко практикуется индийскими йогами и другими специалистами по дыхательной гимнастике.

В некоторых режимах ИВЛ инспираторная пауза отсутствует.

Для аппарата ИВЛ PPV выдох expiratory time – это временной интервал от момента открытия клапана выдоха до начала следующего вдоха. Эксперты делят выдох на две части. Expiratory time = Expiratory flow time + Expiratory pause. Expiratory flow time – временной интервал, когда воздух выходит из легких.

Что такое «экспираторная пауза» (expiratory pause или expiratory hold)? Это временной интервал, когда поток воздуха из легких уже не поступает, а вдох ещё не начался. Если мы имеем дело с «умным» аппаратом ИВЛ, мы обязаны сообщить ему сколько времени, по нашему мнению, может длиться экспираторная пауза. Если время экспираторной паузы истекло, а вдох не начался, «умный» аппарат ИВЛ объявляет тревогу (alarm) и начинает спасать пациента, поскольку считает, что произошло апноэ (apnoe). Включается опция Apnoe ventilation.

В некоторых режимах ИВЛ экспираторная пауза отсутствует.

Total cycle time – время дыхательного цикла складывается из времени вдоха и времени выдоха.

Total cycle time (Ventilatory period) = Inspiratory time + Expiratory time или Total cycle time = Inspiratory flow time + Inspiratory pause + Expiratory flow time + Expiratory pause

Этот фрагмент убедительно демонстрирует трудности перевода:

1. Expiratory pause и Inspiratory pause вообще не переводят, а просто пишут эти термины кириллицей. Мы используем буквальный перевод, – задержка вдоха и выдоха.

2. Для Inspiratory flow time и Expiratory flow time в русском языке нет удобных терминов.

3. Когда мы говорим «вдох» – приходится уточнять: – это Inspiratory time или Inspiratory flow time. Для обозначения Inspiratory flow time и Expiratory flow time мы будем использовать термины потоковое время вдоха и выдоха.

Инспираторная и/или экспираторная паузы могут отсутствовать.


Объём (volume)

– Что такое ОБЪЁМ?

Некоторые наши курсанты отвечают: «Объём – это количество вещества». Для несжимаемых (твердых и жидких) веществ это верно, а для газов не всегда.

Пример: Вам принесли баллон с кислородом, емкостью (объёмом) 3л, – а сколько в нём кислорода? Ну конечно, нужно измерить давление, и тогда, оценив степень сжатия газа и ожидаемый расход, можно сказать, надолго ли его хватит.

Механика – наука точная, поэтому прежде всего, объём – это мера пространства.


И, тем не менее, в условиях спонтанного дыхания и ИВЛ при нормальном атмосферном давлении мы используем единицы объема для оценки количества газа. Сжатием можно пренебречь.* В респираторной механике объёмы измеряют в литрах или миллилитрах.
*Когда дыхание происходит под давлением выше атмосферного (барокамера, глобоководные аквалангисты и т.д.), сжатием газов пренебрегать нельзя, поскольку меняются их физические свойства, в частности растворимость в воде. В результате – кислородное опьянение и кесонная болезнь.

В высокогорных условиях при низком атмосферном давлении здоровый спортсмен-альпинист с нормальным уровнем гемоглобина в крови испытывает гипоксию, несмотря на то, что дышит глубже и чаще (дыхательный и минутный объёмы увеличены).

Для описания объёмов используются три слова

1. Пространство (space).

2. Ёмкость (capacity).

3. Объём (volume).

Объёмы и пространства в респираторной механике.

Минутный объём (MV) – по-английски Minute volume – это сумма дыхательных объёмов за минуту. Если все дыхательные объемы в течение минуты равны, можно просто умножить дыхательный объём на частоту дыханий.

Мертвое пространство (DS) по-английски Dead* space – это суммарный объём воздухоносных путей (зона дыхательной системы, где нет газообмена).

*второе значение слова dead – бездыханный

Объемы, исследуемые при спирометрии

Дыхательный объём (VT ) по-английски Tidal volume – это величина одного обычного вдоха или выдоха.

Резервный объём вдоха – РОвд (IRV) по-английски Inspired reserve volume – это объём максимального вдоха по завершении обычного вдоха.

Ёмкость вдоха – ЕВ (IC) по-английски Inspiratory capacity – это объём максимального вдоха после обычного выдоха.

IC = TLC – FRC или IC = VT + IRV

Общая ёмкость лёгких – ОЕЛ (TLC) по-английски Total lung capacity – это объём воздуха в лёгких по завершении максимального вдоха.

Остаточный объём – ОО (RV) по-английски Residual volume – это объём воздуха в лёгких по завершении максимального выдоха.

Жизненная ёмкость лёгких – ЖЕЛ (VC) по-английски Vital capacity – это объём вдоха после максимального выдоха.

VC = TLC – RV

Функциональная остаточная ёмкость – ФОЕ (FRC) по-английски Functional residual capacity – это объём воздуха в лёгких по завершении обычного выдоха.

FRC = TLC – IC

Резервный объём выдоха – РОвыд (ERV) по-английски Expired reserve volume – это объём максимального выдоха по завершении обычного выдоха.

ERV = FRC – RV

Поток(flow)

– Что такое ПОТОК?

– «Объёмная скорость» – точное определение, удобное для оценки работы насосов и трубопроводов, но для респираторной механики больше подходит:

Поток – это скорость изменения объёма

В респираторной механике поток() измеряют в литрах в минуту.

1. Поток() = 60л/мин, Длительность вдоха(Тi) = 1сек(1/60мин),

Дыхательный объём (VT ) = ?

Решение: х Тi =VT

2. Поток() = 60л/мин, Дыхательный объём(VT ) = 1л,

Длительность вдоха(Тi) = ?

Решение: VT / = Тi

Ответ: 1сек(1/60мин)


Объём – это произведение потока на время вдоха или площадь под кривой потока.


VT = х Тi

Это представление о взаимоотношении потока и объема используется при описании режимов вентиляции.

Давление(pressure)

– Что такое ДАВЛЕНИЕ?

Давление(pressure) – это сила, приложенная к единице площади.

Давление в дыхательных путях измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар=0,9806379 см водного столба.

(Бар - внесистемная единица измерения давления, равная 105 Н/м 2 (ГОСТ 7664-61) или 106 дин/см 2 (в системе СГС).

Значения давлений в разных зонах дыхательной системы и градиенты (gradient) давления По определению давление – это сила, которая уже нашла себе применение, – она (эта сила) давит на площадь и ничего никуда не перемещает. Грамотный доктор знает, что вздох, ветер, и даже ураган, создается разностью давлений или градиентом (gradient).

Например: в баллоне газ под давлением 100 атмосфер. Ну и что, стоит себе баллон и никого не трогает. Газ в баллоне спокойно себе давит на площадь внутренней поверхности баллона и ни на что не отвлекается. А если открыть? Возникнет градиент (gradient), который и создаёт ветер.

Давления:

Paw – давление в дыхательных путях

Pbs - давление на поверхности тела

Ppl - плевральное давление

Palv- альвеолярное давление

Pes - пищеводное давление

Градиенты:

Ptr-трансреспиратонное давление: Ptr = Paw – Pbs

Ptt-трансторакальное давление: Ptt = Palv – Pbs

Pl-транспульмональное давление: Pl = Palv – Ppl

Pw-трансмуральное давление: Pw = Ppl – Pbs

(Легко запомнить: если использована приставка «транс» – речь идёт о градиенте).

Главной движущей силой, позволяющей сделать вдох, является разность давлений на входе в дыхательные пути (Pawo- pressure airway opening) и давлением в том месте, где дыхательные пути заканчиваются – то есть в альвеолах (Palv). Проблема в том, что в альвеолах технически сложно померить давление. Поэтому для оценки дыхательного усилия на спонтанном дыхании оценивают градиент между пищеводным давлением (Pes), при соблюдении условий измерения оно равно плевральному(Ppl), и давлением на входе в дыхательные пути (Pawo).

При управлении аппаратом ИВЛ наиболее доступным и информативным является градиент между давлением в дыхательных путях (Paw) и давлением на поверхности тела (Pbs- pressure body surface). Этот градиент (Ptr) называется «трансреспиратораное давление», и вот как он создаётся:

Как видите, ни один из методов ИВЛ не соответствует полностью спонтанному дыханию, но если оценивать воздействие на венозный возврат и лимфоотток аппараты ИВЛ NPV типа «Kirassa» кажутся более физиологичными. Аппараты ИВЛ NPV типа «Iron lung», создавая отрицательное давление над всей поверхностью тела, снижают венозный возврат и, соответственно, сердечный выброс.

Без Ньютона здесь не обойтись.

Давление (pressure) – это сила, с которой ткани лёгких и грудной клетки противодействуют вводимому объёму, или, иными словами, сила, с которой аппарат ИВЛ преодолевает сопротивление дыхательных путей, эластическую тягу лёгких и мышечно-связочных структур грудной клетки (по третьему закону Ньютона это одно и то же поскольку «сила действия равна силе противодействия»).

Equation of Motion уравнение сил, или третий закон Ньютона для системы «аппарат ИВЛ – пациент»

В том случае, если аппарат ИВЛ осуществляет вдох синхронно с дыхательной попыткой пациента, давление, создаваемое аппаратом ИВЛ (Pvent), суммируется с мышечным усилием пациента (Pmus) (левая часть уравнения) для преодоления упругости легких и грудной клетки (elastance) и сопротивления (resistance) потоку воздуха в дыхательных путях (правая часть уравнения).

Pmus + Pvent = Pelastic + Presistive

(давление измеряют в миллибарах)

(произведение упругости на объём)

Presistive = R x

(произведение сопротивления на поток) соответственно

Pmus + Pvent = E x V + R x

Pmus(мбар) + Pvent(мбар) = E(мбар/мл) x V(мл) + R (мбар/л/мин) x (л/мин)

Заодно вспомним, размерность E - elastance (упругость) показывает на сколько миллибар возрастает давление в резервуаре на вводимую единицу объёма (мбар/мл); R - resistance сопротивление потоку воздуха проходящему через дыхательные пути (мбар/л/мин).

Ну и для чего нам пригодится это Equation of Motion (уравнение сил)?

Понимание уравнения сил позволяет нам делать три вещи:

Во-первых, любой аппарат ИВЛ PPV может управлять одномоментно только одним из изменяемых параметров входящих в это уравнение. Эти изменяемые параметры – давление объём и поток. Поэтому существуют три способа управления вдохом: pressure control, volume control, или flow control. Реализация варианта вдоха зависит от конструкции аппарата ИВЛ и выбранного режима ИВЛ.

Во-вторых, на основе уравнения сил созданы интеллектуальные программы, благодаря которым аппарат рассчитывает показатели респираторной механики (напр.: compliance (растяжимость), resistance (сопротивление) и time constant (постоянная времени «τ »).

В-третьих, без понимания уравнения сил не понять такие режимы вентиляции как “proportional assist”, “automatic tube compensation”, и “adaptive support”.

Главные расчетные параметры респираторной механики resistance, elastance, compliance

1. Сопротивление дыхательных путей (airway resistance)

Сокращенное обозначение – Raw. Размерность – смH 2 O/Л/сек или мбар/мл/сек Норма для здорового человека – 0,6-2,4 смH 2 O/Л/сек. Физический смысл данного показателя говорит, каким должен быть градиент давлений (нагнетающее давление) в данной системе, чтобы обеспечить поток 1 литр в секунду. Современному аппарату ИВЛ несложно рассчитать резистанс (airway resistance), у него есть датчики давления и потока – разделил давление на поток, и готов результат. Для расчета резистанс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau) на поток ().
Raw = (PIP–Pplateau)/.
Что и чему сопротивляется?

Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление (airway resistance) зависит от длины, диаметра и проходимости дыхательных путей, эндотрахеальной трубки и дыхательного контура аппарата ИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенках эндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острых обструктивных заболеваниях лёгких, приводящих к уменьшению диаметра воздухоносных путей. В соответствии с законом Гагена-Пуазеля при уменьшении диаметра трубки вдвое для обеспечения того же потока градиент давлений, создающий этот поток (нагнетающее давление), должен быть увеличен в 16 раз.

Важно иметь в виду, что сопротивление всей системы определяется зоной максимального сопротивления (самым узким местом). Устранение этого препятствия (например, удаление инородного тела из дыхательных путей, устранение стеноза трахеи или интубация при остром отёке гортани) позволяет нормализовать условия вентиляции легких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл термина соответствует мировым стандартам.

Важно помнить, что:

1. Аппарат ИВЛ может измерить резистанс только в условиях принудительной вентиляции у релаксированного пациента.

2. Когда мы говорим о резистанс (Raw или сопротивлении дыхательных путей) мы анализируем обструктивные проблемы преимущественно связанные с состоянием проходимости дыхательных путей.

3. Чем больше поток, тем выше резистанс.

2. Упругость (elastance) и податливость (compliance)

Прежде всего, следует знать, это строго противоположные понятия и elastance =1/сompliance. Смысл понятия «упругость» подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы – возвращать это усилие. Наиболее наглядно это свойство проявляется у стальных пружин или резиновых изделий. Специалисты по ИВЛ при настройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символом E. Размерность упругости мбар/мл, это означает: на сколько миллибар следует поднять давление в системе, чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» – это «растяжимость» (compliance) (иногда говорят «податливость»).

– Почему? – Самое простое объяснение:

– На мониторах аппаратов ИВЛ выводится compliance, вот мы им и пользуемся.

Термин комплайнс (compliance) используется как существительное мужского рода российскими реаниматологами так же часто, как и резистанс (всегда когда монитор аппарата ИВЛ показывает эти параметры).

Размерность комплайнса – мл/мбар показывает, на сколько миллилитров увеличивается объём при повышении давления на 1 миллибар. В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы – то есть легких и грудной клетки вместе. Для обозначения комплайнс используют символы: Crs (compliance respiratory system) – комплайнс дыхательной системы и Cst (compliance static) – комплайнс статический, это синонимы. Для того, чтобы рассчитать статический комплайнс, аппарат ИВЛ делит дыхательный объём на давление в момент инспираторной паузы (нет потока – нет резистанс).

Cst = V T /(Pplateau –PEEP)

Норма Cst (комплайнса статического) – 60-100мл/мбар

Приводимая ниже схема показывает, как на основе двухкомпонентной модели рассчитывается сопротивление потоку (Raw), статический комплайнс (Cst) и упругость (elastance) дыхательной системы.


Измерения выполняются у релаксированного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, как объём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты. В этот момент измеряется давление плато.

Важно помнить, что:

1. Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релаксированного пациента во время инспираторной паузы.

2. Когда мы говорим о статическом комплайнсе (Cst, Crs или растяжимости респираторной системы), мы анализируем рестриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.

Философское резюме можно выразить двусмысленным утверждением: Поток создаёт давление.

Обе трактовки соответствуют действительности, то есть: во-первых, поток создаётся градиентом давлений, а во-вторых, когда поток наталкивается на препятствие (сопротивление дыхательных путей), давление увеличивается. Кажущаяся речевая небрежность, когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположены со стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концов эндотрахеальной трубки. Поэтому в практике обычно мы пользуемся показателями давления в дыхательном контуре аппарата ИВЛ.

По эту сторону эндотрахеальной трубки для обеспечения вдоха объёмом Хмл за время Yсек мы можем повышать давление вдоха (и соответственно градиент) на сколько у нас хватит здравого смысла и клинического опыта, поскольку возможности аппарата ИВЛ огромны.

По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Хмл за время Yсек есть только сила упругости легких и грудной клетки и сила его дыхательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы уже предупреждали, «поток – это скорость изменения объёма», поэтому для обеспечения эффективного выдоха нужно предоставить пациенту время.

Постоянная времени (τ )

Так в отечественных руководствах по физиологии дыхания называется Time constant. Это произведение комплайнс на резистанс. τ = Cst х Raw вот такая формула. Размерность постоянной времени, естественно секунды. Действительно, ведь мы умножаем мл/мбар на мбар/мл/сек. Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательных путей. У разных людей τ разная. Понять физический смысл данной константы легче, начав с выдоха. Представим себе, завершён вдох, – начат выдох. Под действием эластических сил дыхательной системы воздух выталкивается из лёгких, преодолевая сопротивление дыхательных путей. Сколько времени займёт пассивный выдох? – Постоянную времени умножить на пять (τ х 5). Так устроены легкие человека. Если аппарат ИВЛ обеспечивает вдох, создавая постоянное давление в дыхательных путях, то у релаксированного пациента максимальный для данного давления дыхательный объём будет доставлен за то же время (τ х 5).

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлении вдоха или пассивном выдохе.


При выдохе по истечении времени τ пациент успевает выдохнуть 63% дыхательного объёма, за время 2τ – 87%, а за время 3τ – 95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.

Практическое значение постоянной времени:

Если время, предоставляемое пациенту для выдоха <5τ , то после каждого вдоха часть дыхательного объёма будет задерживаться в легких пациента.

Максимальный дыхательный объём при вдохе с постоянным давлением поступит за время 5τ .

При математическом анализе графика кривой объёма выдоха расчет постоянной времени позволяет судить о комплайнс и резистанс.

Данный график показывает, как современный аппарат ИВЛ рассчитывает постоянную времени.


Бывает, что статический комплайнс рассчитать невозможно, т. к. для этого должна отсутствовать спонтанная дыхательная активность и необходимо измерить давление плато. Если разделить дыхательный объём на максимальное давление, получим еще один расчётный показатель, отражающий комплайнс и резистанс.

CD = Dynamic Characteristic = Dynamic effective compliance = Dynamic compliance.

CD = VT /(PIP – PEEP)

Больше всего сбивает с толку название – «динамический комплайнс», поскольку измерение происходит при неостановленном потоке и, следовательно, данный показатель включает и комплайнс, и резистанс. Нам больше нравится название «динамическая характеристика». Когда этот показатель снижается, это значит, что либо понизился комплайнс, либо возрос резистанс, либо и то и другое. (Или нарушается проходимость дыхательных путей, или снижается податливость легких.) Однако если одновременно с динамической характеристикой мы оцениваем по кривой выдоха постоянную времени, мы знаем ответ.

Если постоянная времени растёт, это обструктивный процесс, а если уменьшается, значит лёгкие стали менее податливы. (пневмония?, интерстициальный отек?...)


Поскольку стенки мелких бронхов обладают большой податливостью, их просвет поддерживается напряжением эластических структур стромы легких, радиально растягивающих бронхи. При максимальном вдохе эластические структуры легких предельно напряжены.

По мере выдоха их напряжение постепенно ослабевает, в результате чего в определенный момент выдоха происходит сдавление бронхов и перекрытие их просвета. ООЛ и представляет собою тот объем легких, при котором экспираторное усилие перекрывает мелкие бронхи и препятствует дальнейшему опорожнению легких.

Чем беднее эластический каркас легких, тем при меньшем объеме выдоха спадаются бронхи. Этим и объясняется закономерное увеличение ООЛ у лиц пожилого возраста и особенно заметное его увеличение при эмфиземе легких.

Увеличение ООЛ свойственно также и больным с нарушением бронхиальной проходимости. Этому способствует увеличение внутригрудного давления на выдохе, необходимое для продвижения воздуха по суженному бронхиальному дереву.

Одновременно увеличивается и ФОЕ, что в известной мере является компенсаторной реакцией, так как чем больше уровень спокойного дыхания смещен в инспираторную сторону, тем сильнее растягиваются бронхи и тем больше силы эластической отдачи легких, направленные на преодоление повышенного бронхиального сопротивления.

Как показали специальные исследования (А. П. Зильбер, 1974), некоторые бронхи спадаются раньше, чем будет достигнут уровень максимального выдоха. Объем легких, при котором начинают спадаться бронхи, так называемый объем закрытия, и в норме больше ООЛ, у больных он может быть больше ФОЕ. В этих случаях даже при спокойном дыхании в некоторых зонах легких вентиляция нарушается. Смещение уровня дыхания в инспиратор-ную сторону, т. е. увеличение ФОЕ, в такой ситуации оказывается еще более целесообразным.

«Руководство по пульмонологии», Н.В.Путов

Из рис. 2-6Б следует, что отношение между давлением и изменением объема легких не остается постоянным во всем диапазоне легочных объемов. При их малой величине это отношение может быть выражено как:

где: Р - растягивающее давление,

Е - эластичность,

Д V - изменение объема легких.

Эластичность (константа) - есть мера упругости легочной ткани. Чем больше эластичность ткани, тем большее давление требуется приложить для достижения ладанного изменения объема легких.

При большом объеме легких необходимо большее растягивающее давление, чтобы получить заданное изменение объема. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может: кривая давление-объем переходит в свою плоскую часть. Изменение объема на единицу давления отражается наклоном рассматриваемой кривой давление-объем и называется ста­тической растяжимостью (Cstat). Она представляет собой меру податливости лег­кого и находится в реципрокном отношении к его эластичности (Е =* 1/Cstat). Лег­кое более растяжимо при низких и средних объемах, чем при больших.

На статическую растяжимость легкого влияет множество факторов, включая сто размеры. Легкое крупных размеров подвержено большим изменениям своего объема на единицу изменения давления, чем маленькое легкое. С целью сравнения можно "нормализовать" влияние размеров легкого на его растяжимость. Нормали­зованная растяжимость известна как удельная растяжимость. Она рассчитывается делением статической растяжимости на объем легких, при котором она измеряется.

В клинике статическую растяжимость измеряют, получая кривую давление -объем при изменениях последнего от величины, соответствующей уровню спокойного вы­доха (функциональная остаточная емкость, ФОБ, FRC), до объема на 500 мл больше FRC. Статическая растяжимость легкого у здоровых взрослых людей составляет величину около 200 мл/см вод. ст. или 0.2 л/см вод, ст.

В условиях патологии статическая растяжимость легких может как повышать­ся, так и понижаться. Эмфизема, для которой характерна значительная утрата как соединительнотканных компонентов легкого, так и альвеол, приводит к увеличению статической растяжимости (гл. 6). Фиброз легких (гл. 7), застойная сердечная недо­статочность (отек легких), геморрагия легких и пневмония вызывают понижение статической легочной растяжимости. Кривые давление-объем, характерные для.здоровых людей, а также больных эмфиземой и легочным фиброзом, изображены на рис. 2-7.

Рис. 2-7. Кривые давление--объем у лдоровых и больных людей. Но оси абсциес давление статической отдачи легких (равное трапспуль момалыюму и плевральному в ус­ловиях отсутствия потока). Но оси ординат объем легких в процентах от должной величины TLC.

Для пе­рерастянутых;>м(|)и коматозных лег­ких TLC больше 100 % должной; для фиброиированпых легких TLC меньше 100 % должной. Кроме того, наклон кривой при эмфиземе уве­личен, в то время как при фиброзе легких – уменьшен.

Давление в описанных ранее отношениях давление- объем, является транспульмональным. В статических условиях, при открытой голосовой щели Pal v равняется нулю, a Pi = Ppl. Плевральное давление, в свою очередь, равно давлению статичес­кой эластической отдачи (Pel). Какие же факторы определяют эластическую отда­чу? Одним из них является содержание эластических структур в тканях. Эластин и коллаген находятся в альвеолярных стенках вокруг бронхов и кровеносных сосудов. Геометрическое расположение этих волокон придает легким эластические свойства, подобно тому, как нейлоновые нити делают чулок эластичным. Дополнительным фактором, важным в установлении отношений давление-объем легких, является поверхностное натяжение.

Рис. 2-8. Понерхностное натяжение и давление в пузырьке. (А) Поверх­ностное натяжение (Т) в мыльном ну.чыре. Силы, действующие на по­верхность пузырька, стремятся уменьшить ее площадь и способству­ют спадению пузырька, создавая внут­ри нею положительное давление (Р). (Б) .Чакон Лапласа. При данном по­верхностном натяжении газ из мень­шего пузырька будет перемешаться в больший, поскольку меньший ра­диус кривизны (г, < г 2) создает более высокое давление (Р, > Р 2) в мень­шем пузырьке. (Для расчета Р в структуре с одной поверхностью раз­дела жидкость-газ закон Лапласа имеет вид Р == 2Т/r.)

Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание - это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.

Легочная вентиляция

Легочная вентиляция определяется следующими факторами (А.П. Зильбер):

  1. механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
  2. эластичностью и растяжимостью легочной ткани и грудной клетки;
  3. проходимостью воздухоносных путей;
  4. внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.

При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.

Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.

Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.

При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).

Эластичность легочной ткани и грудной клетки

Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Р тр / т):

Ртр/т = Р альв - Р атм где Р алв, - альвеолярное, а Р атм - атмосферное давление.

Во время вдоха Р альв и Р тр/т становятся отрицательными, во время выдоха - положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Р альв равно Р атм.

Уровень Р альв в свою очередь зависит от величины внутриплеврального давления (Р пл) и так называемого давления эластической отдачи легкого (Р эл):

Давление эластической отдачи - это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.

Еще один важный показатель, обратный эластичности легочной ткани - апатическая растяжимость легкого - представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:

  1. Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
  2. Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
  3. Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
  4. Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.

Сурфактант, выстилающий внутреннюю поверхность альвеолы - это вещество, уменьшающее силу поверхностного натяжения.

Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.

Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.

Важнейшими физиологическими функциями сурфактанта являются:

  • увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
  • уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
  • предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).

При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.

Пластическая отдача грудной стенки

Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.

При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха.

Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.

Проходимость воздухоносных путей и мукоцилиарный клиренс

Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.

Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.

Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного - геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.

На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.

При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.

В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.

Регуляция просвета бронхов

Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:

  1. Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
  2. Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
  3. На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
    • вазоактивный интестинальный полипептид (VIP);
    • субстанция Р.

Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).

Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления - гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.

Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:

  1. Дилатация бронхов развивается при стимуляции:
    • бета2-адренорецепторов адреналином;
    • VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
  2. Сужение просвета бронхов возникает при стимуляции:
    • М-холинергических рецепторов ацетилхолином;
    • рецепторов к субстанции Р (системы НАНХ);
    • Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).

Внутрилегочное распределение воздуха и его соответствие кровотоку

Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени - верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.

Диффузия газов

Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит

  1. от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
  2. от толщины альвеолярно-капиллярной мембраны;
  3. от общей поверхности зоны диффузии в легком.

У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови - 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе - 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу - всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.

Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.

Легочный кровоток

В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.

Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.

Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.

Вентиляционно-перфузионные отношения

Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.

При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:

  • уменьшением легочной вентиляции при сохраненном прежнем уровне кровотока, когда V/Q
  • уменьшением кровотока при сохраненной вентиляции альвеол (V/Q > 1,0).

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.


Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Тонкий слой жидкости покрывает поверхность альвеол легких . Переходная граница между воздушной средой и жидкостью имеет поверхностное натяжение , которое формируется межмолекулярными силами и которое будет уменьшать площадь покрываемой молекулами поверхности. Однако миллионы альвеол легких, покрытых мономолекулярным слоем жидкости, не спадаются, поскольку эта жидкость содержит субстанции, которые в целом называются сурфактантом (поверхностно активный агент). Поверхностно активные агенты обладают свойством снижать поверхностное натяжение слоя жидкости в альвеолах легких на границе фаз воздух-жидкость, благодаря которому легкие становятся легко растяжимыми.

Рис. 10.7. Приложение закона Лапласа к изменению поверхностного натяжения слоя жидкости, покрывающего поверхность альвеол . Изменение радиуса альвеол изменяет в прямой зависимости величину поверхностного натяжения в альвеолах (Т). Давление (Р) внутри альвеол также варьирует при изменении их радиуса: уменьшается при вдохе и увеличивается при выдохе.

Альвеолярный эпителий состоит из плотно контактирующих между собой альвеолоцитов (пневмоцитов ) I и II типа и покрыт мономолекулярным слоем сурфактанта , состоящего из фосфолипидов, белков и полисахаридов (глицерофосфолипиды 80 %, глицерол 10 %, белки 10 %). Синтез сурфактанта осуществляется альвеолоцитами II типа из компонентов плазмы крови. Основным компонентом сурфактанта является дипальмитоилфосфатидилхолин (более 50 % фосфолипидов сурфактанта), который адсорбируется на границе фаз жидкость-воздух с помощью белков сурфактанта SP-B и SP-C. Эти белки и глицерофосфолипиды уменьшают поверхностное натяжение слоя жидкости в миллионах альвеол и обеспечивают легочной ткани свойство высокой растяжимости. Поверхностное натяжение слоя жидкости, покрывающей альвеолы, изменяется в прямой зависимости от их радиуса (рис. 10.7). В легких сурфактант изменяет степень поверхностного натяжения поверхностного слоя жидкости в альвеолах при изменении их площади. Это обусловлено тем, что во время дыхательных движений количество сурфактанта в альвеолах остается постоянным. Поэтому при растяжении альвеол во время вдоха слой сурфактанта становится тоньше, что вызывает снижение его действия на поверхностное натяжение в альвеолах. При уменьшении объема альвеол во время выдоха молекулы сурфактанта начинают более плотно прилегать друг к другу и, увеличивая поверхностное давление, снижают поверхностное натяжение на границе фаз воздух-жидкость. Это препятствует спадению (коллапсу) альвеол во время экспирации, независимо от ее глубины. Сурфактант легких влияет на поверхностное натяжение слоя жидкости в альвеолах в зависимости не только от ее площади, но и от направления, в котором происходит изменение площади поверхностного слоя жидкости в альвеолах. Этот эффект сурфактанта называется гистерезисом (рис. 10.8).

Физиологический смысл эффекта заключается в следующем. При вдохе по мере увеличения объема легких под влиянием сурфактанта увеличивается натяжение поверхностного слоя жидкости в альвеолах, что препятствует растяжению легочной ткани и ограничивает глубину инспирации. Напротив, при выдохе поверхностное натяжение жидкости в альвеолах под влиянием сурфактанта уменьшается, но не исчезает полностью. Поэтому даже при самом глубоком выдохе в легких не происходит спадения, т. е. коллапса альвеол.

Рис. 10.8. Эффект поверхностного натяжения слоя жидкости на изменение объема легких в зависимости от внутриплеврального давления при раздувании легких солевым раствором и воздухом. Когда объем легких увеличивается за счет их наполнения солевым раствором, то в них отсутствуют поверхностное натяжение и феномен гистерезиса. Относительно интактных легких - площадь петли гистерезиса свидетельствует об увеличении поверхностного натяжения слоя жидкости в альвеолах при вдохе и снижении этой величины при выдохе.

В составе сурфактанта имеются белки типа SP-A и SP-D, благодаря которым сурфактант участвуют в местных иммунных реакциях, опосредуя фагоцитоз , поскольку на мембранах альвеолоцитов II типа и макрофагов имеются рецепторы SP-A. Бактериостатическая активность сурфактанта проявляется в том, что это вещество опсонизирует бактерии, которые затем легче фагоцитируются альвеолярными макрофагами. Кроме того, сурфактант активирует макрофаги и влияет на скорость их миграции в альвеолы из межальвеолярных перегородок. Сурфактант выполняет защитную роль в легких, предотвращая непосредственный контакт альвеолярного эпителия с частицами пыли, агентами инфекционного начала, которые достигают альвеол с вдыхаемым воздухом. Сурфактант способен обволакивать инородные частицы, которые затем транспортируются из респираторной зоны легкого в крупные дыхательные пути и удаляются из них со слизью. Наконец, сурфактант снижает поверхностное натяжение в альвеолах до близких к нулевым величинам и тем самым создает возможность расправления легких при первом вдохе новорожденного.

Растяжимость легких количественно характеризует растяжимость легочной ткани в любой момент изменения их объема в течение фазы вдоха и выдоха. Поэтому растяжимость представляет собой статическую характеристику эластических свойств легочной ткани. Однако во время дыхания возникает сопротивление движению аппарата внешнего дыхания, обусловливающее его динамические характеристики, среди которых наибольшее значение имеет сопротивление потоку воздуха при его движении через дыхательные пути легких.

На движение воздуха из внешней среды через дыхательные пути к альвеолам и в обратном направлении оказывает влияние градиент давления: при этом воздух движется из области высокого давления в область низкого давления. При вдохе давление воздуха в альвеолярном пространстве меньше, чем атмосферное, а при выдохе - наоборот. Сопротивление дыхательных путей потоку воздуха зависит от градиента давления между полостью рта и альвеолярным пространством.

Поток воздуха через дыхательные пути может быть ламинарным , турбулентным и переходным между этими типами. Воздух движется в дыхательных путях, в основном, ламинарным потоком, скорость которого выше в центре этих трубок и меньше вблизи их стенок. При ламинарном потоке воздуха его скорость линейно зависит от градиента давления вдоль дыхательных путей. В местах деления дыхательных путей (бифуркации) ламинарный поток воздуха переходит в турбулентный. При возникновении турбулентного потока в дыхательных путях возникает дыхательный шум, который может выслушиваться в легких с помощью стетоскопа. Сопротивление ламинарному потоку газа в трубе обусловлено ее диаметром. Поэтому, согласно закону Пуа-зейля величина сопротивления дыхательных путей потоку воздуха пропорциональна их диаметру, возведенному в четвертую степень. Поскольку сопротивление дыхательных путей находится в обратной зависимости от их диаметра в четвертой степени, то этот показатель самым существенным образом зависит от изменений диаметра воздухоносных путей, вызванных, например, выделением в них слизи из слизистой оболочки или сужением просвета бронхов. Общий диаметр сечения дыхательных путей возрастает в направлении от трахеи к периферии легкого и становится максимально большим в терминальных дыхательных путях, что вызывает резкое снижение сопротивления потоку воздуха и его скорости в этих отделах легких. Так, линейная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. На границе воздухопроводящей и переходной зон дыхательных путей линейная скорость воздушного потока составляет около 1 см/с, в дыхательных бронхах она снижается до 0,2 см/с, а в альвеолярных ходах и мешочках - до 0,02 см/с. Столь низкая скорость воздушного потока в альвеолярных ходах и мешочках обусловливает в них незначительное сопротивление движущемуся воздуху и не сопровождается значимыми затратами энергии мышечного сокращения.

Напротив, наибольшее сопротивление дыхательных путей потоку воздуха возникает на уровне сегментарных бронхов в связи с наличием в их слизистой оболочке секреторного эпителия и хорошо развитого гладкомышечного слоя, т. е. факторов, которые в наибольшей степени влияют как на диаметр воздухоносных путей, так и на сопротивление в них потоку воздуха. В преодолении этого сопротивления заключается одна из функций дыхательных мышц.

В легких большинство дыхательных путей представляют собой эластичные трубки, за исключением трахеи и бронхов, стенки которых «укреплены» хрящевой тканью. Бронхиолы имеют высокоэластичные стенки, и диаметр их просвета может изменяться пассивно во время дыхательных движений. В обычных физиологических условиях при вдохе (как спокойном, так и глубоком) растяжение легочной ткани вызывает растяжение стенки мелких дыхательных путей. Согласно закону Пуазейля, незначительное увеличение радиуса дыхательных путей резко снижает в них сопротивление потоку воздуха. Поэтому при вдохе сопротивление дыхательных путей потоку воздуха не оказывает существенного влияния на силу сокращения дыхательных мышц. Напротив, при выдохе, особенно при глубоком и усиленном (форсированном) выдохе, диаметр мелких дыхательных путей уменьшается, что вызывает значительное увеличение сопротивления потоку воздуха в них. Влияние объема легких при выдохе на поток воздуха в дыхательных путях количественно характеризуется зависимостью «поток-объем». В клинической физиологии дыхания оценка этой зависимости является основным критерием типа и степени нарушения функции дыхательных путей.

Рис. 10.9. Давление в дыхательных путях при выдохе . Вертикальными стрелками показаны величины давления, возникающие в дыхательных путях под влиянием комплайенса легких и грудной клетки. Горизонтальными стрелками в области дыхательных путей показано, что давление, оказываемое на стенки дыхательных путей, может увеличивать их просвет при спокойном выдохе (а) либо уменьшать их диаметр при глубоком выдохе (б) в том участке общей площади поперечного сечения мелких дыхательных путей, где сравниваются величины внутриплеврального и альвол и давления в дыхательных путях (эквипотенциальная точка - ЭПТ). Р -давление (см водн. ст.), РА - давление в альвеолах.

Зависимость «поток-объем» следующим образом характеризует влияние большого объема воздуха в легких на экспираторный поток воздуха в дыхательных путях (рис. 10.9). В момент, предшествующий началу выдоха, после глубокой инспирации в дыхательных путях отсутствует поток воздуха, а внутриплевральное давление равно -10 см водн. ст. С началом форсированной экспирации внутриплевральное давление возрастает примерно до +30 см водн. ст. относительно атмосферного давления, вызывая уменьшение радиуса как альвеол, так и мелких дыхательных путей. В этих условиях давление газов внутри альвеол становится выше, чем в плевральной полости, благодаря действию на стенки альвеол эластической тяги легких. В результате поток воздуха выходит из альвеолярного пространства по дыхательным путям во внешнюю среду по градиенту давления, который постепенно уменьшается в дыхательных путях по мере приближения к трахее. Спадению эластичных стенок бронхиол препятствует градиент давления воздуха между дыхательными путями и внутриплевральным давлением. Однако в некоторой точке дыхательных путей (как правило, в области бронхиол) этот градиент давления становится равным нулю (эквипотенциальная точка давления) и стенки дыхательных путей могут частично или полностью спадаться. В этих условиях продвижение воздуха по дыхательным путям может обеспечиваться только за счет увеличения силы сокращения (работы) внутренних межреберных мышц и мышц живота.

Снижение эластической тяги легких , например при эмфиземе легких, вызывает смещение ближе к альвеолярному пространству эквипотенциальной точки давления в дыхательных путях при выдохе, и, таким образом, блокируется выход воздуха непосредственно из альвеол. Дыхательные шумы, которые возникают в легких у больных, обусловлены прохождением воздуха через спавшиеся мелкие дыхательные пути. Увеличение экспираторного усилия у таких пациентов повышает риск спадения мелких дыхательных путей и еще больше затрудняет выдох. При бронхиальной астме у пациентов дыхательные пути уменьшают свой просвет в результате сокращения гладких мышц стенки бронхиол. В этом случае увеличение сопротивления потоку воздуха в мелких дыхательных путях вызывает рост градиента давления вдоль дыхательных путей при вдохе и смещает эквипотенциальную точку ближе к альвеолярному пространству, вызывая коллапс дыхательных путей при выдохе. Усиление сокращения экспираторных мышц в фазу выдоха еще больше затрудняет выдох у пациентов вследствие уменьшения просвета мелких дыхательных путей.

Сокращение дыхательных мышц создает градиент давления по ходу дыхательных путей. При этом преодолевается эластическое сопротивление легких и грудной клетки, а также сопротивление дыхательных путей потоку воздуха. Наряду с этим последние два показателя позволяют измерять работу дыхательных мышц во время дыхательного цикла. Если принять, что величина работы (W) представляет собой произведение силы (F) на путь (х), то получим: W = F х х В дыхательной системе, в которой измеряемыми величинами являются дыхательный объем и внутриплевральное давление, сила сокращения дыхательных мышц приравнивается к развиваемому ими давлению (Р), которое они оказывают на площадь (А). Поэтому, подставляя выражение F = Р х А в формулу работы дыхательных мышц в течение дыхательного цикла, получим: W = Р х А хх. Поскольку величина А, умноженная на путь (х), в дыхательной системе представляет собой аналог дыхательного объема (V), то общая формула работы дыхательных мышц имеет вид: W = Р х V.

Рис. 10.10. Работа дыхательных мышц при спокойном дыхании . Изменения дыхательного объема (вертикальная ось) при вдохе и выдохе сопровождаются изменениями внутри-плеврального давления. При одновременной регистрации этих величин во время дыхательного цикла общая площадь петель дыхательный объем - внутриплевральное давление отражает количественно работу дыхательных мышц. Работа дыхательных мышц при вдохе больше, поскольку она затрачивается на преодоление эластического сопротивления легких. При выдохе работа дыхания минимальная, поскольку совершается за счет энергии эластической тяги легких, т. е. пассивно. Стрелками показаны изменения внутриплев-рального давления в течение фаз дыхательного цикла. Чем больше площадь петли, тем больше работа дыхательных мышц.

Работа дыхательных мышц при спокойном дыхании. При спокойном дыхании объем вдоха достигает максимум 1 л, а инспираторные мышцы совершают минимальную работу (рис. 10.10). Сокращение инспираторных мышц обеспечивает вдох, а выдох осуществляется пассивно за счет эластической тяги легких. В этих условиях сопротивление дыхательных путей при вдохе и выдохе не оказывает лимитирующего влияния на процесс внешнего дыхания. По мере увеличения глубины дыхания дыхательный объем формируется за счет объема функциональной остаточной емкости и резервного объема вдоха, а работа дыхания совершается против существенного нарастания поверхностного натяжения жидкости на поверхности альвеол. Поэтому чем глубже инспирация, тем большую работу совершают инспираторные мышцы. Во время выдоха, когда глубина дыхательных движений осуществляется в пределах объема жизненной емкости легких, объем легких возвращается пассивно к уровню функциональной остаточной емкости за счет эластической тяги легких, а в пределе функциональной остаточной емкости выдох происходит активно в результате сокращения мышц живота, которые при этом совершают работу.

Работа дыхательных мышц при глубоком дыхании. При глубоком дыхании на силу сокращения дыхательных мышц начинает оказывать влияние изменение диаметра дыхательных путей. Глубокий вдох вызывает расширение дыхательных путей и снижение сопротивления в них потоку вдыхаемого воздуха, поэтому работа инспираторных мышц обусловлена только величинами комплайенса легких и тканей грудной клетки. При глубоком выдохе, при котором в вьщыхаемом воздухе оказывается объем воздуха функциональной остаточной емкости, возникает сдавление мелких дыхательных путей высоким градиентом давления между дыхательными путями и внутриплевральным давлением. Существенное увеличение потока газов через дыхательные пути приводит к росту их сопротивления потоку воздуха, которое становится основным фактором, обусловливающим величину работы дыхания. Однако при глубоком дыхании механизмы регуляции диаметра дыхательных путей при участии вегетативной нервной системы способны минимизировать величину работы, которые выполняют дыхательные мышцы. Так, при глубоком дыхании за счет регулирующих влияний вегетативной нервной системы на гладкие мышцы дыхательных путей увеличивается их диаметр. В результате на сокращение дыхательных мышц затрачивается минимальное количество энергии. Например, при астме дыхание у пациентов становится медленным и глубоким, что снижает затраты энергии на преодоление сопротивления дыхательных путей потоку воздуха и уменьшает работу дыхательных мышц.