Дыхание и дыхательные мышцы: механизм вдоха и выдоха. Внешнее дыхание

В положении спокойного выдоха, при полном расслаблении, устанавливается равновесие двух противоположно направленных сил тяги: эластической тяги легких, эластической тяги грудной клетки. Их алгебраическая сумма равна нулю.

Объем воздуха, находящегося при этом в легких, именуется функциональной остаточной емкостью. Давление в альвеолах нулевое, т. е. атмосферное. Движение воздуха по бронхам прекращается. Направленность эластических сил проявляется после вскрытия плевральной полости: легкое сжимается, грудная клетка расширяется. Местом «сцепления» этих сил являются париетальный и висцеральный листки плевры. Прочность этого сцепления огромна - она может выдержать давление до 90 мм рт. ст. Для того чтобы началось дыхание (перемещение воздуха по бронхиальному дереву), необходимо нарушить равновесие эластических сил, что достигается путем приложения дополнительной силы - силы дыхательной мускулатуры (при самостоятельном дыхании) или силы аппарата (при принудительном дыхании). В последнем случае место приложения силы может быть двояким:

  • снаружи (сжимание или расширение грудной клетки, например дыхание в респираторе)
  • изнутри (повышение или снижение альвеолярного давления, например управляемое дыхание наркозным аппаратом).

Для обеспечения необходимого объема альвеолярной вентиляции требуется затратить какую-то энергию на преодоление сил, противодействующих дыханию. Это противодействие складывается главным образом из:

  • эластического (преимущественно сопротивления легких)
  • неэластического (в основном сопротивление бронхов воздушному потоку) сопротивления.

Сопротивление брюшной стенки, суставных поверхностей скелета грудной клетки и сопротивление тканей на растяжение незначительно и потому не учитывается. Эластическое сопротивление грудной клетки в обычных условиях является способствующим фактором и потому тоже не оценивается в данном сообщении.

Эластическое сопротивление

Эластика грудной клетки связана с характерным строением и расположением ребер, грудины и позвоночника. Хрящевая фиксация с грудиной, пластинчатое строение и форма полукруга ребер придают грудной клетке упругость или эластичность. Эластическая тяга груди направлена на расширение объема грудной полости. Упругие свойства легочной ткани связаны с наличием в ней специальных эластических волокон, стремящихся сжать легочную ткань.

Суть дыхания следующая — на вдохе мышечные усилия растягивают грудную клетку, а вместе с ней и легочную ткань. Выдох осуществляется под влиянием эластической тяги легочной ткани и смещения органов брюшной полости, объем грудной клетки возрастает под действием эластической тяги груди. При этом функциональная остаточная емкость увеличивается, а альвеолярный газообмен ухудшается.

Эластические свойства легких определяются изменением альвеолярного давления на изменение наполнения легочной ткани на единицу объема. Эластичность легких выражается в сантиметрах водяного столба на 1 л. У здорового человека эластичность легких составляет 0,2 л/см водяного столба. Это означает, что при изменении наполнения легких на 1 л внутрилегочное давление изменяется на 0,2 см водяного столба. На вдохе это давление будет возрастать, а на выдохе - снижаться.

Сопротивление эластической тяги легких прямо пропорционально наполнению легких и не зависит от скорости потока воздуха.

Работа по преодолению эластической тяги возрастает в виде квадрата прироста объема и потому она выше при глубоком дыхании и ниже при поверхностном.

На практике наибольшее распространение получил показатель растяжимости легких (комплайенс).

Растяжимость легочной ткани является величиной, обратной понятию эластичности, и определяется изменением воздухонаполнения легких под влиянием изменения альвеолярного давления на единицу давления. У здоровых людей эта величина составляет примерно 0,16 л/см водяного столба с размахом от 0,11 до 0,33 л/см водяного столба.

Растяжимость ткани легкого в различных отделах неодинакова. Так, корень легкого имеет незначительную растяжимость. В зоне разветвления бронхов, где уже имеется паренхиматозная ткань, растяжимость оказывается средней, а сама легочная паренхима (по периферии легкого) обладает наибольшей растяжимостью. Ткань в нижних отделах обладает большей растяжимостью, чем в области верхушек. Это положение удачно сочетается с тем фактом, что нижние отделы груди наиболее значительно меняют свой объем при дыхании.

Показатель растяжимости легочной ткани подвержен большим изменениям в условиях патологии. Растяжимость уменьшается, если легочная ткань становится более плотной, например:

  • при легочном застое вследствие сердечно-сосудистой недостаточности
  • при фиброзе легких.

Это означает, что на ту же величину сдвига давления происходит меньшее растяжение легочной ткани, т. е. меньшее изменение объема. Растяжимость легких иногда снижается до 0,7-0,19 л/см водяного столба. Тогда у таких больных наблюдается значительная одышка даже в покое. Снижение растяжимости легочной ткани наблюдается также под воздействием рентгенотерапии, из-за развивающегося склеротического процесса в легочной ткани. Снижение растяжимости в этом случае является ранним и выраженным признаком пневмосклероза.

В случаях развития атрофических процессов в легочной ткани (например, при эмфиземе легких), сопровождающихся утратой эластичности, растяжимость будет повышена и может достигнуть 0,78-2,52 л/см водяного столба.

Бронхиальное сопротивление

Величина бронхиального сопротивления зависит от:

  • скорости потока воздуха по бронхиальному дереву;
  • анатомического состояния бронхов;
  • характера потока воздуха (ламинарного или турбулентного).

При ламинарном потоке сопротивление зависит от вязкости, а при турбулентном - от плотности газа. Турбулентные потоки обычно развиваются в местах ветвления бронхов и на местах анатомических изменений стенок воздуховодов. В норме же на преодоление бронхиального сопротивления расходуется около 30-35% всей работы, но при эмфиземе и бронхитах этот расход резко увеличивается и достигает 60-70% всей затраченной работы.

Сопротивление воздушному потоку со стороны бронхиального дерева у здоровых людей остается при обычном объеме дыхания постоянным и составляет в среднем 1,7 см л/сек Н2О при потоке воздушной струи 0,5 л/сек. Согласно закону Пуазейля, сопротивление будет меняться прямо пропорционально квадрату скорости потока и IV степени радиуса просвета воздухоносной трубки и обратно пропорционально длине этой трубки. Таким образом, при анестезировании больных с нарушенной бронхиальной проходимостью (бронхит, бронхиальная астма, эмфизема) для обеспечения наиболее полного выдоха дыхание должно быть редким, чтобы хватило времени для полноценного выдоха, или следует применять отрицательное давление на выдохе в целях обеспечения надежного вымывания углекислоты из альвеол.

Повышенное сопротивление потоку газовой смеси будет также наблюдаться при интубации трубкой небольшого диаметра (по отношению к просвету трахеи). Несоответствие размера трубки на два номера (по английской номенклатуре) приведет к повышению сопротивления примерно в 7 раз. Сопротивление возрастает с увеличением длины трубки. Поэтому наращивание ее (иногда наблюдаемое при на лице) должно производиться со строгим учетом возрастающего при этом сопротивления потоку газов и увеличения объема анестезиологического вредного пространства.

Во всех сомнительных случаях вопрос должен решаться в пользу укорочения трубки и увеличения ее диаметра.

Работа дыхания

Работа дыхания определяется энергией, затраченной на преодоление эластических и неэластических сил, противодействующих вентиляции, т. е. той энергии, которая заставляет дыхательный аппарат совершать дыхательные экскурсии. Установлено, что при спокойном дыхании главные энергетические затраты уходят на преодоление сопротивления со стороны легочной ткани и совсем небольшая энергия расходуется на преодоление сопротивлений со стороны грудной клетки и брюшной стенки.

На долю эластического сопротивления легких приходится около 65%, а на долю сопротивления бронхов и тканей -35%.

Работа дыхания, выраженная в миллилитрах кислорода на 1 л вентиляции, для здорового человека составляет 0,5 л/мин или 2,5 мл при МОД, равном 5000 мл.

У больных с пониженной растяжимостью легочной ткани (жесткое легкое) и высоким бронхиальным сопротивлением работа по обеспечению вентиляции может оказаться очень высокой. При этом нередко выдох становится активным. Такого рода изменения аппарата дыхания имеют не только теоретическое значение, например при обезболивании больных с эмфиземой легких, у которых имеется повышенная растяжимость легочной ткани (атрофия легких) и увеличенное бронхиальное сопротивление наряду с фиксированной грудной клеткой. Поэтому в обычных условиях выдох становится активным и усиливается за счет сокращения мышц живота. Если больному будет дан глубокий наркоз или будет произведена , то этот компенсаторный механизм будет нарушен. Снижение глубины вдоха приведет к опасной задержке углекислоты. Поэтому у больных с эмфиземой легких при лапаротомиях вентиляция должна быть принудительной. В послеоперационном периоде эти больные должны находиться под особенно строгим надзором и в случае необходимости их переводят на принудительное дыхание через трахеотомическую трубку с манжеткой (с помощью различного рода спиропульсаторов). Поскольку время выдоха у этих больных затянуто (из-за снижения эластичности и затруднения воздушного потока по бронхиальному дереву), при проведении принудительного дыхания для обеспечения хорошей вентиляции альвеол желательно создать отрицательное давление аа выдохе. Однако отрицательное давление не должно быть чрезмерным, иначе оно может вызвать спадение стенок бронхов и блокирование значительного объема газа в альвеолах. В этом случае результат будет обратным - альвеолярная вентиляция снизится.

Своеобразные изменения наблюдаются при обезболивании больных с сердечным застоем легких, у которых показатель растяжимости, определенный до наркоза, оказывается сниженным (жесткое легкое). Благодаря проведению управляемой вентиляции легкое у них становится более «мягким» оттого, что часть застойной крови отжимается в большой круг кровообращения. Растяжимость легких увеличивается. И тогда при том же давлении легкие расправляются на больший объем. Это обстоятельство следует иметь в виду в случаях ведения наркоза с помощью спиронульсатора, так как с увеличением растяжимости возрастает объем легочной вентиляции, что в ряде случаев может отразиться на глубине наркоза и гемеостазе кислотно-щелочного баланса.

Вентиляция и механика дыхания

Соотношение между глубиной вдоха и частотой дыхания определяется механическими свойствами аппарата дыхания. Эти соотношения устанавливаются так, чтобы работа, затрачиваемая на обеспечение требуемой альвеолярной вентиляции, была минимальной.

При пониженной растяжимости легких (жесткое легкое) поверхностное и частое дыхание будет наиболее экономичным (так как скорость потока воздуха не вызывает большого сопротивления), а при повышенном бронхиальном сопротивлении наименьшее количество энергии расходуется при медленных потоках воздуха (редкое и глубокое дыхание). Этим и объясняется, почему больные с пониженным показателем растяжимости легочной ткани дышат часто и поверхностно, а больные с повышенным бронхиальным сопротивлением - редко и глубоко.

Аналогичная взаимозависимость наблюдается у здорового человека. Глубокое дыхание бывает редким, а поверхностное - частым. Эти взаимоотношения устанавливаются под контролем центральной нервной системы.

Рефлекторная иннервация определяет оптимальные соотношения между частотой дыхания, глубиной вдоха и скоростью потока дыхательного воздуха при формировании нужного уровня альвеолярной вентиляции, при которых требуемая альвеолярная вентиляция обеспечивается при возможно минимальной работе дыхания. Так, у больных с ригидными легкими (растяжимость снижена) наилучшее соотношение между частотой и глубиной вдоха наблюдается при частом дыхании (энергия экономится за счет меньшего растягивания легочной ткани). Наоборот, у больных с повышенным сопротивлением со стороны бронхиального дерева (бронхиальная астма) лучшее соотношение наблюдается при глубоком редком дыхании. Наилучшее состояние у здоровых людей в условиях покоя наблюдается при частоте дыхания 15 в минуту и глубине 500 мл. Работа дыхания будет составлять около 0,1-0,6 гм/мин.

Статью подготовил и отредактировал: врач-хирург

Эластическая тяга легких – сила, с которой легкие стремятся сжаться.

Она возникает за счет следующих причин: 2/3эластической тяги легких обусловлено сурфактантом – поверхностным натяжением жидкости, выстилающей альвеолы, около 30%-эластическими волокнами легких и бронхов, 3%-тонусом гладкомышечных волокон бронхов. Сила эластической тяги всегда направлена с наружи внутрь. Т.е. на величину растяжимости и эластической тяги легких сильное влияние оказывает наличие на внутриальвеолярной поверхности сурфактанта – вещества, представляющего собой смесь фосфолипидов и белков.

Роль сурфактанта :

1) снижает поверхностное натяжение в альвеолах и таким образом увеличивает растяжимость легких;

2) стабилизирует альвеолы, препятствует слипанию их стенок;

3) снижает сопротивление диффузии газов через стенку альвеол;

4) препятствует отеку альвеол путем снижения величины поверхностного натяжения в альвеолах;

5) облегчает расправление легких при первом вдохе новорожденного;

6) способствует активации фагоцитоза альвеолярными макрофагами и их двигательной активности.

Синтез и замена сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, избыток и недостаточность кислорода, некоторые фармакологические препараты могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Все это ведет к их ателектазу или спадению.

Пневмотороксом

Пневмотороксом называется поступление воздуха в межплевральное пространство, возникающее при проникающих ранениях грудной клетки, нарушениях герметичность плевральной полости. При этом легкие спадаются, так как внутриплевральное давление становится одинаковым с атмосферным. Эффективный газообмен в этих условиях является невозможным. У человека правая и левая плевральные полости не сообщаются, и благодаря этому односторонний пневмоторокс, например, слева, не ведет к прекращению легочного дыхания правого легкого. Со временем воздух из плевральной полости рассасывается, и спавшееся легкое вновь расправляется и заполняет всю грудную полость. Двусторонний пневмоторокс несовместим с жизнью.

Конец работы -

Эта тема принадлежит разделу:

Физиология дыхания

Спирометрия метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра.. спирография методика непрерывной регистрации объемов выдыхаемого и.. пневмотахография методика непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиология дыхания
Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клетках. Дыхание – комплекс

Внешнее дыхание
Внешнее дыхание осуществляется циклически и состоит из фазы вдоха, выдоха и дыхательной паузы. У человека частота дыхательных движений в среднем равна 16-18 в одну минуту. Внешнее дыхание

Отрицательное давление в плевральной щели
Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает висцеральный плевральный листок, а внутреннюю поверхность грудной клетки - париетальная пл

Легочные объемы и емкости
При спокойном дыхании человек вдыхает и выдыхает около 500 мл воздуха. Этот объем воздуха называется дыхательным объемом (ДО) (рис.3).

Транспорт газов кровью
Кислород и углекислый газ в крови находятся в двух состояниях: в химически связанном и в растворенном. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный

Транспорт кислорода
Из общего количества кислорода, который содержится в артериальной крови, только 5% растворено в плазме, остальное количество кислорода переносится эритроцитами, в которых он находится в химической

Гидрокарбонатный буфер
Из вышеприведенных газообменных реакция следует, что их течение на уровне легких и тканей оказывается разнонаправленным. Чем в этих случаях определяется направленность образования и диссоциации фор

Виды соединений Hb
Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. Основная функция гемоглобина - перенос кислорода и частично углекислого

Основные системы регуляции кислотно – щелочного равновесия в организме
Кислотно – щелочное равновесие (КЩР) (кислотно –щелочной баланс, кислотно –щелочное состояние (КЩС), кислотно – основное равновесие) – это постоянство концентрации Н+ (протонов) в жидких

Регуляция дыхания
Как и все системы в организме, дыхание регулируется двумя основными механизмами – нервным и гуморальным. Основой нервной регуляции является реализация рефлекса Геринга –Бреера, который по

Подробности

Внешнее (легочное) дыхание = конвекционный транспорт в альвеолы + диффузия из альвеол в кровь легочных капилляров.

Мышцы, участвующие в акте дыхания:

1. Основные инспираторные – наружные межреберные (поднимают ребра); вспомогательные – большая и малая грудные, лестничнные и грудино-ключно-сосцевидная

2. Основные экспираторные – внутренние межреберные; вспомогательные – мышцы живота.

Типы дыхания : внешнее (легочная вентиляция и газообмен между альвеолами и кровью) и внутреннее (тканевое).

В зависимости от того, в каком направлении изменяются размеры грудной клетки при дыхании, различают грудной, брюшной и смешанный типы дыхания . Грудной тип дыхания чаще встречается у женщин. При нем грудная полость расширяется преимущественно в переднезаднем и боковых направлениях, тогда вентиляция нижних участков легких часто оказывается недостаточной.
Брюшной тип дыхания более характерен для мужчин. Расширение грудной полости при нем происходит преимущественно в вертикальном направлении, за счет диафрагмы, вентиляция верхушек легких может оказаться недостаточной. При смешанном типе дыхания равномерное расширение грудной полости во всех направлениях обеспечивает вентиляцию всех частей легких.

Сопротивления воздушному потоку:

1. Эластические

2. Вязкие (при спокойном дыхании незначительны).

I. Эластическое сопротивление.

Альвеолярное давление (PA) = разница давлений между альвеолярным и атмосферным воздухом. На кривой участок нормального дыхания ≈прямая =>упругое сопротивление всей дыхательной системы при нормальном дыхании почти постоянно.

Плевральное давление (PПЛ) =разница между атмосферным и внутриплевр.давлением. Из графика =>упруг.сопротивление грудн.клетки возрастает с увеличением давления.

Транспульмональное давление (PT) =разница между альвеолярн. и внутриплевр.давления. Все действующие на легкие силы уравновеш-ся в момент полного выдоха (V=ФОЕ).

Показатель эластических свойств – растяжимость (tg угла наклона релакс.кривой) – Compliance: Cдых.системы=ΔV/ΔPa – прирост давления, необходимого для растяжения все больше с увеличивающимся количеством воздуха. Elastance – способность тканей легких вернуться в прежнее состояние после растяжения.

Связь с растяжимостями других структур: 1/CДС=1/СГК +1/СЛ. (СГК=СЛ=2∙CДС=0,2 л/см вод.ст.). Для определения – упрощен.формула (испытуемый вдыхает опр.V воздуха, фиксир. ГК мышцами, открывает голос.щель) =>РА=0 =>Сл=ΔV/ΔPПЛ.

II.Неэластическое сопротивление.

90% - аэродинамическое сопротивление дыхательных путей (поток образует завихрения в местах разветвления бронхов и патологических сужений).

Закон Хагена-Пуазейля : V=ΔP/R=Pa/R (турбулентным потоком пренебрегают). Сопротивление воздухоносных путей R≈2см водн.ст. (Осн.вклад – трахеи и бронхов, у мелких путей – оч.большое сумм.сечение). 10% - Сопротивление тканей (внутр.трение и деформация). Соотношения давление/объем. 1.Форма гр.клетки =Const (i.e., смена выдоха вдохом): действует только эласт.тяга легких =>созд-ся отриц.относительно атмосферного внутриплевр.давления (PПЛ,СТАТ<0; РА,СТАТ=0). 2.Норм.дыхание. Вдох: поступление воздуха в расшир. альвеолы затруднено аэродин.сопротивлением =>А<0 =>PПЛ становится еще более отрицательным (РПЛ,ДИН =РПЛ,СТАТ +РА).

Поверхностное натяжение в альвеолах в 10 раз меньше, чем расчетное натяжение для слоя воды <=за счет сурфактанта - состоит из белков и липидов, в основном произв-х лецитина (гидрофил.головки молекул связаны с молекулами Н2О, а гидрофоб.головки друг от друга отталкиваются). +препятствуют выходу воздуха из мелких альвеол в крупные (по з.Лапласа) – т.к.молекулы сурфактанта располагаются плотнее с уменьшением радиуса альвеолы =>↓пов.натяжение в мелких альвеолах.

Иметь ровную, красивую линию зубов и ослепительную улыбку – естественное желание каждого современного человека.

Но получить такие зубы от природы дано далеко не всем, поэтому многие люди обращаются за профессиональной помощью в стоматологические клиники для исправления недостатков зубов, в частности, для с целью .

Корректирующее устройство позволяет исправить неровные зубные ряды или неправильно сформированный прикус. Как дополнение к подобранным брекетам на них устанавливаются и закрепляются эластичные резинки (ортодонтические тяги), выполняющие свою, индивидуальную, четко обозначенную функцию.

В наше время многие клиники предоставляют подобные услуги и проводят процедуры коррекции на должном уровне и с отличным конечным результатом.

Тянем — потянем, вытянуть зубки можем

Сразу стоит учесть и понять – резиновые тяги, закрепляемые на брекетах, не применяются для значимого и серьезного исправления прикуса, эластики лишь корректируют направление движения верхней и нижней челюсти, а также регулируют необходимую симметрию и соотношение зубных рядов.

Опасаться использования таких эластичных тяг не нужно. Благодаря высококачественным материалам, используемым при производстве таких резинок и современным технологиям, они не вызывают аллергических реакций и не причиняют механических повреждений зубам и деснам.

Устанавливает тяги только врач-стоматолог, он же исправляет возникшие после процедуры проблемы или неудобства.

Дело в том, что эластики должны быть укреплены именно в таком положении, которое позволит максимально эффективно брекетам выполнять свою задачу. К тому же, они не должны мешать человеку при совершении естественных движений челюстями – жеванию, глотанию и речи.

При возникновении незапланированной ситуации – ослаблении или разрыве резинки с одной стороны зубных рядов следует незамедлительно обратиться к врачу. Перекос в симметрии натяжения приведет к нежелательному результату.

Если нет возможности обратиться за профессиональной помощью в кратчайшие сроки, то лучше снять все имеющиеся резинки, чтобы не получилось асимметрии натяжения тяг.

Виды и способы установки резинок на брекет-систему

Резинки на брекеты обычно закрепляют одним из двух способов установки:

  1. V-образные натягиваются в форме буквы V (в виде галочки) и действуют на две стороны зубных рядов, корректируя положение двух соседних зубов и закрепляясь на противоположной челюсти нижней частью «галочки».
  2. Коробчатые , после установки, внешне напоминают квадрат или прямоугольник, скрепляя челюсти «углами» и способствуют корпусному перемещению зубных рядов.

Коробчатые эластичные тяги для брекетов

Способ крепления выбирает лечащий врач, подыскивая оптимальный вариант для наилучшей эффективности всей процедуры коррекции прикуса или выпрямления зубов.

Иногда применяется сразу два эти варианта крепления тяг, если зубы расположены в рядах слишком неровно и требуется применение максимального укрепления и усиления стягивающего эффекта резинок.

Ортодонтические тяги можно приобрести самостоятельно в аптеках или специализированных магазинах, но лучше, все-таки, довериться выбору своего лечащего врача, который разбирается в материалах и производителях таких приспособлений гораздо лучше любого пациента.

Некачественный материал, применяемый на некоторых предприятиях при производстве резинок, может привести к возникновению аллергической реакции или не иметь нужной для положительного результата эластичности.

Ведь такая система ставится на очень длительное время, иногда на несколько лет, и заниматься лечением зубов в этот период будет гораздо сложнее.

Обычно установка брекетов проходит за два визита к врачу: в первый раз укрепляется одна челюсть, во второй раз, после наблюдения и фиксирования правильности подобранного метода – противоположная.

Связано это еще и с длительностью самой процедуры установки фиксирующего устройства, она редко длится менее часа. После установки брекет-системы на челюсти полностью на ней закрепляют резиновые тяги (эластики), в соответствии с выбранным способом крепления, соединяя челюсти в нужном направлении и с необходимым усилием.

Правила использования резинок

Основным устройством, корректирующим неровности зубных рядов и исправляющим прикус, является все же сама брекет-система, а эластичные тяги – лишь дополнение, необходимое, но не являющееся центральным элементом конструкции. Относиться небрежно к использованию таких резинок нельзя.

Существует несколько правил ношения эластиков, которые пациент должен выполнять:

Если природа не наградила человека ослепительной улыбкой и ровными рядами белоснежных зубов то, к сожалению, для создания достойного, элегантного и красивого образа, придется обращаться за помощью к профессионалам.

Но, к счастью и удаче пациентов, современная медицина в целом и стоматология в частности, способны, в буквальном смысле творить чудеса. Качественно поставленная брекет-система и грамотно подобранные ортодонтические тяги помогут сделать прикус более правильным, а неровные зубные ряды выпрямить и сформировать красивую линию зубов.

Опасаться нежелательных последствий не стоит, конечно, если обращаться за помощью к специалистам, зарекомендовавшим себя в данной сфере деятельности.

При правильном выборе клиники и врача-стоматолога, приобретении качественных материалов и неукоснительном соблюдении всех правил и требований доктора процедура коррекции пройдет успешно, и улыбка станет красивой и обворожительной.

Поддержание постоянства состава альвеолярного воздуха обеспечивается за счет непрерывно осуществляемых дыхательных циклов — вдоха и выдоха. Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе примерно такой же объем воздуха вытесняется из легких. За счет обновления части альвеолярного воздуха поддерживается его постоянный .

Акт вдоха совершается вследствие увеличения объема грудной полости за счет сокращения наружных косых межреберных мышц и других вдыхательных мышц, обеспечивающих отведение ребер в стороны, а также благодаря сокращению диафрагмы, что сопровождается изменением формы ее купола. Диафрагма становится конусовидной, положение сухожильного центра не изменяется, а мышечные участки смещаются в сторону брюшной полости, оттесняя органы назад. При увеличении объема грудной клетки давление в плевральной щели уменьшается, возникает разница между давлением атмосферного воздуха на внутреннюю стенку легких и давлением воздуха в плевральной полости на наружную стенку легких. Давление атмосферного воздуха на внутреннюю стенку легких начинает преобладать и вызывает увеличение объема легких, а следовательно, и поступление атмосферного воздуха в легкие.

Таблица 1. Мышцы, обеспечивающие вентиляцию легкого

Примечание. Принадлежность мышц к основным и вспомогательным группам может меняться в зависимости от типа дыхания.

Когда вдох окончен и дыхательные мышцы расслабляются, ребра и купол диафрагмы возвращаются в положение до вдоха, при этом уменьшается объем грудной клетки, повышается давление в плевральной щели, возрастает давление на наружную поверхность легких, часть альвеолярного воздуха вытесняется и происходит выдох.

Возвращение ребер в положение до вдоха обеспечивается эластическим сопротивлением реберных хрящей, сокращением внутренних косых межреберных мышц, вентральных зубчатых мышц, мышц живота. Диафрагма возвращается в положение до вдоха благодаря сопротивлению стенок живота, органов брюшной полости, смешенных при вдохе назад, и сокращению мышц живота.

Механизм вдоха и выдоха. Дыхательный цикл

Дыхательный цикл включает вдох, выдох и паузу между ними. Его длительность зависит от частоты дыхания и составляет 2,5-7 с. Продолжительность вдоха у большинства людей короче продолжительности выдоха. Длительность паузы очень изменчива, она может отсутствовать между вдохом и выдохом.

Для инициирования вдоха необходимо, чтобы в инспираторном (активирующем вдох) отделе в возник залп нервных импульсов и их посылка по нисходящим путям в составе вентрального и передней части бокового канатиков белого вещества спинного мозга в его шейный и грудной отделы. Эти импульсы должны достигнуть мотонейронов передних рогов сегментов СЗ-С5, формирующих диафрагмальные нервы, а также мотонейронов грудных сегментов Th2-Th6, формирующих межреберные нервы. Активированные дыхательным центром мотонейроны спинного мозга посылают потоки сигналов по диафрагмальному и межреберным нервам к нервно-мышечным синапсам и вызывают сокращение диафрагмальной, наружных межреберных и межхрящевых мышц. Это приводит к увеличению объема грудной полости за счет опускания купола диафрагмы (рис. 1) и движения (подъем с поворотом) ребер. В результате давление в плевральной щели уменьшается (до 6-20 см вод. ст. в зависимости от глубины вдоха), транспульмональное давление возрастает, становится больше сил эластической тяги легких и они растягиваются, увеличивая объем.

Рис. 1. Изменения размеров грудной клетки, объема легких и давления в плевральной щели при вдохе и выдохе

Увеличение объема легких приводит к снижению давления воздуха в альвеолах (при спокойном вдохе оно становится ниже атмосферного на 2-3 см вод. ст.) и атмосферный воздух по градиенту давления поступает в легкие. Происходит вдох. При этом объемная скорость воздушного потока в дыхательных путях (О) будет прямо пропорциональна градиенту давления (ΔР) между атмосферой и альвеолами и обратно пропорциональна сопротивлению (R) дыхательных путей для потока воздуха.

При усиленном сокращении мышц вдоха грудная клетка еще более расширяется и объем легких возрастает. Глубина вдоха увеличивается. Это достигается благодаря сокращению вспомогательных инспираторных мышц, к которым относятся все мышцы, прикрепляющиеся к костям плечевого пояса, позвоночнику или черепу, способные при своем сокращении поднимать ребра, лопатку и фиксировать плечевой пояс с отведенными назад плечами. Важнейшими среди этих мышц являются: большие и малые грудные, лестничные, грудино-клю- чично-сосцсвидные и передние зубчатые.

Механизм выдоха отличается тем, что спокойный выдох происходит пассивно за счет сил, накопленных при вдохе. Для остановки вдоха и переключения вдоха на выдох необходимо прекращение посылки нервных импульсов из дыхательного центра к мотонейронам спинного мозга и мышцам вдоха. Это приводит к расслаблению мышц вдоха, в результате чего объем грудной клетки начинает уменьшаться под влиянием следующих факторов: эластической тяги легких (после глубокого вдоха и эластической тяги грудной клетки), силы тяжести грудной клетки, приподнятой и выведенной из устойчивого положения при вдохе, и давления органов брюшной полости на диафрагму. Для осуществления усиленного выдоха необходима посылка потока нервных импульсов из центра выдоха к мотонейронам спинного мозга, иннервирующим мышцы выдоха — внутренние межреберные и мышцы брюшного пресса. Их сокращение приводит к еще большему уменьшению объема грудной клетки и удалению большего объема воздуха из легких за счет подъема купола диафрагмы и опускания ребер.

Уменьшение объема грудной клетки приводит к снижению транспульмонального давления. Эластическая тяга легких становится больше этого давления и вызывает уменьшение объема легких. Это увеличивает давление воздуха в альвеолах (на 3-4 см вод. ст. больше атмосферного) и воздух по градиенту давления выходит из альвеол в атмосферу. Совершается выдох.

Тип дыхания определяется по величине вклада различных дыхательных мышц в увеличение объема грудной полости и заполнение легких воздухом при вдохе. Если вдох происходит главным образом за счет сокращения диафрагмы и смещения (вниз и вперед) органов брюшной полости, то такое дыхание называют брюшным или диафрагмальным ; если же за счет сокращения межреберных мышц — грудным . У женщин преобладает грудной тип дыхания, у мужчин — брюшной. У людей, выполняющих тяжелую физическую работу, как правило, устанавливается брюшной тип дыхания.

Работа дыхательных мышц

Для осуществления вентиляции легких необходимо затрачивать работу, которая выполняется за счет сокращения дыхательных мышц.

При спокойном дыхании в условиях основного обмена на работу дыхательных мышц затрачивается 2-3% от всей энергии, расходуемой организмом. При усиленном дыхании эти затраты могут достигать 30% от уровня энергетических затрат организма. У людей с заболеваниями легких и дыхательных путей эти затраты могут быть еще большими.

Работа дыхательных мышц затрачивается на преодоление эластических сил (легких и грудной клетки), динамических (вязкостных) сопротивлений движению потока воздуха через дыхательные пути, инерционной силы и тяжести смещаемых тканей.

Величина работы дыхательных мышц (W) рассчитывается по интегралу произведения изменения объема легких (V) и внутриплеврального давления (Р):

На преодоление эластических сил расходуется 60-80% от общих затрат W , вязкостных сопротивлений — до 30% W .

Вязкостные сопротивления представлены:

  • аэродинамическим сопротивлением дыхательных путей, которое составляет 80-90% суммарных вязкостных сопротивлений и увеличивается при возрастании скорости потока воздуха в дыхательных путях. Объемная скорость этого потока рассчитывается по формуле

где Р a — разность между давлением в альвеолах и атмосфере; R — сопротивление дыхательных путей.

При дыхании через нос оно составляет около 5 см вод. ст. л -1 *с -1 , при дыхании через рот — 2 см вод. ст. л -1 *с -1 . На трахею, долевые и сегментарные бронхи приходится в 4 раза большее сопротивление, чем на более дистальные участки дыхательных путей;

  • сопротивлением тканей, которое составляет 10-20% от общего вязкостного сопротивления и обусловлено внутренним трением и неупругой деформацией тканей грудной и брюшной полости;
  • инерционным сопротивлением (1-3% от общего вязкостного сопротивления), обусловленным ускорением объема воздуха в дыхательных путях (преодоление инерции).

При спокойном дыхании работа по преодолению вязкостных сопротивлений незначительна, но при усиленном дыхании или при нарушении проходимости дыхательных путей может резко возрастать.

Эластическая тяга легких и грудной клетки

Эластическая тяга легких — сила, с которой легкие стремятся сжаться. Две трети эластической тяги легких обусловлены поверхностным натяжением сурфактанта и жидкости внутренней поверхности альвеол, около 30% создается эластическими волокнами легких и примерно 3% тонусом гладко- мышечных волокон внутрилегочных бронхов.

Эластическая тяга легких — сила, с которой ткань легкого противодействует давлению плевральной полости и обеспечивает спадение альвеол (обусловлена наличием в стенке альвеол большого количества эластических волокон и поверхностным натяжением).

Величина эластической тяги легких (Е) обратно пропорциональна величине их растяжимости (С л):

Растяжимость легких у здоровых людей составляет 200 мл/см вод. ст. и отражает увеличение объема легких (V) в ответ на возрастание транспульмонального давления (Р) на 1 см вод. ст.:

При эмфиземе легких их растяжимость увеличивается, при фиброзе уменьшается.

На величину растяжимости и эластической тяги легких сильное влияние оказывает наличие на внутриальвеолярной поверхности сурфактанта, представляющего собой структуру из фосфолипидов и белков, образуемых альвеолярными пневмоцитами 2-го типа.

Сурфактант играет важную роль в поддержании структуры, свойств легких, облегчении газообмена и выполняет следующие функции:

  • снижает поверхностное натяжение в альвеолах и увеличивает растяжимость легких;
  • препятствует слипанию стенок альвеол;
  • увеличивает растворимость газов и облегчает их диффузию через стенку альвеолы;
  • препятствует развитию отека альвеол;
  • облегчает расправление легких при первом вдохе новорожденного;
  • способствует активации фагоцитоза альвеолярными макрофагами.

Эластическая тяга грудной клетки создастся за счет эластичности межреберных хрящей, мышц, париетальной плевры, структур соединительной ткани, способных сжиматься и расширяться. В конце выдоха сила эластичной тяги грудной клетки направлена наружу (в сторону расширения грудной клетки) и максимальна по величине. При развитии вдоха она постепенно уменьшается. Когда вдох достигает 60-70% от его максимально возможной величины, эластическая тяга грудной клетки становится равной нулю, а при дальнейшем углублении вдоха направлена внутрь и препятствует расширению грудной клетки. В норме растяжимость грудной клетки (С |к) приближается к 200 мл/см вод. ст.

Общая растяжимость грудной клетки и легких (С 0) вычисляется по формуле 1/С 0 = 1/C л + 1 /С гк. Средняя величина С 0 составляет 100 мл/см вод. ст.

В конце спокойного выдоха величины эластической тяги легких и грудной клетки равны, но противоположны по направленности. Они уравновешивают друг друга. В это время грудная клетка находится в наиболее устойчивом положении, которое называют уровнем спокойного дыхания и принимают за точку отсчета при различных исследованиях.

Отрицательное давление в плевральной щели и пневмоторакс

Грудная клетка образует герметичную полость, обеспечивающую изоляцию легких от атмосферы. Легкие покрывает листок висцеральной плевры, а внутреннюю поверхность грудной клетки — листок париетальной плевры. Листки переходят один в другой у ворот легкого и между ними образуется щелевидное пространство, заполненное плевральной жидкостью. Часто это пространство называют плевральной полостью, хотя полость между листками образуется лишь в особых случаях. Слой жидкости в плевральной щели несжимаем и нерастяжим и плевральные листки не могут отойти друг от друга, хотя способны легко скользить вдоль (подобно двум стеклам, приложенным смоченными поверхностями, их трудно разъединить, но легко смещать вдоль плоскостей).

При обычном дыхании давление между плевральными листками ниже, чем атмосферное; его называют отрицательным давлением в плевральной щели.

Причинами возникновения отрицательного давления в плевральной щели являются наличие эластической тяги легких и грудной клетки и способность плевральных листков захватывать (сорбировать) молекулы газов из жидкости плевральной щели или воздуха, попадающего в нее при ранениях грудной клетки или при проколах с лечебной целью. Из-за наличия отрицательного давления в плевральной щели в нее идет постоянная фильтрация небольшого количества газов из альвеол. В этих условиях сорбционная активность плевральных листков предотвращает накопление в ней газов и предохраняет легкие от спадания.

Важная роль отрицательного давления в плевральной щели состоит в удерживании легких в растянутом состоянии даже во время выдоха, что необходимо для заполнения ими всего объема грудной полости, определяемого размерами грудной клетки.

У новорожденного соотношение объемов легочной паренхимы и грудной полости больше, чем у взрослых, поэтому в конце спокойного выдоха отрицательное давление в плевральной щели исчезает.

У взрослого человека в конце спокойного выдоха отрицательное давление между листками плевры составляет в среднем 3-6 см вод. ст. (т.е. на 3-6 см меньше, чем атмосферное). Если человек находится в вертикальном положении, то отрицательное давление в плевральной щели вдоль вертикальной оси тела значительно различается (изменяется на 0,25 см вод. ст. на каждый сантиметр высоты). Оно максимально в области верхушек легких, поэтому при выдохе они остаются более растянутыми и при последующем вдохе их объем и вентиляция увеличиваются в небольшой степени. В области основания легких величина отрицательного давления может приближаться к нулю (или оно даже может стать положительным в случае потери легкими эластичности из-за старения или заболеваний). Своей массой легкие давят на диафрагму и прилежащую к ней часть грудной клетки. Поэтому в области основания в конце выдоха они менее всего растянуты. Это создаст условия для их большего растяжения и усиленной вентиляции при вдохе, увеличения газообмена с кровью. Под влиянием силы тяжести к основанию легких притекает больше крови, кровоток в этой зоне легких превышает вентиляцию.

У здорового человека лишь при форсированном выдохе давление в плевральной щели может стать больше атмосферного. Если же выдох производится с максимальным усилием в малое по объему замкнутое пространство (например, в прибор пневмотонометр), то давление в плевральной полости может превысить 100 см вод. ст. С помощью такого дыхательного маневра пневмотонометром определяют силу мышц выдоха.

В конце спокойного вдоха отрицательное давление в плевральной щели составляет 6-9 см вод. ст., а при максимально интенсивном вдохе может достигать большей величины. Если же вдох осуществляется с максимальным усилием в условиях перекрытия дыхательных путей и невозможности поступления воздуха в легкие из атмосферы, то отрицательное давление в плевральной щели на короткое время (1-3 с) достигает 40-80 см вод. ст. С помощью такого теста и прибора пневмогонометра определяют силу мышц вдоха.

При рассмотрении механики внешнего дыхания учитывается также транспульмональное давление — разность между давлением воздуха в альвеолах и давлением в плевральной щели.

Пневмотораксом называют поступление воздуха в плевральную щель, приводящее к спадению легких. В нормальных условиях, несмотря на действие сил эластической тяги, легкие остаются расправленными, так как из-за наличия в плевральной щели жидкости листки плевры не могут разъединиться. При попадании в плевральную щель воздуха, который может быть сжат или расширен в объеме, степень отрицательного давления в ней уменьшается или оно становится равным атмосферному. Под действием эластических сил легкого висцеральный листок отгягивастся от париетального и легкие уменьшаются в размере. Воздух может попасть в плевральную щель через отверстие поврежденной грудной стенки или через сообщение поврежденного легкого (например, при туберкулезе) с плевральной щелью.