Что такое гидроабразивная резка металла. Резка металла водой: область применения

Современная цивилизация не мыслит себя без повсеместного использования стали. Железо, которое всего 400-500 лет тому назад ценилось едва ли не на вес золота, сегодня тоннами может бездарно ржаветь на свалках. Сталь выплавляется миллионами тонн, используясь абсолютно везде. Основной проблемой зачастую является ее обработка, так как многие сорта этого материала достаточно твердые, а современные технологические нормы весьма жесткие и не допускают рваных и грубых «линий отреза». Чтобы повысить качество готовых изделий, учеными была изобретена резка водой металла.

Когда ее стали применять на практике?

Как ни удивительно, но эта технология довольно-таки широко использовалась еще в 60-х годах прошлого века. Впервые она применялась в достаточно специфичных отраслях, наподобие авиастроения и космической промышленности. Но вскоре компании стали подумывать о том, что резка водой металла - превосходное новшество, которое может дать широчайшие возможности для всей промышленности при ее более широком внедрении в производство.

С тех пор этот метод обработки металлов становится все более и более популярным. Может ли использоваться резка водой металла только для листового проката, или же ей подвластны и прочие металлоконструкции? Какие у этого метода существуют достоинства и недостатки? Обо всем этом мы постараемся рассказать в рамках данной статьи.

Области применения

Основным преимуществом такого способа резки является то обстоятельство, что на поверхность материала практически не оказывается значимого механического воздействия. Полностью отсутствует трение, механизмы не нагреваются. Это оказывает крайне положительное влияние на качество среза и всей готовой детали.

Обрабатываемые материалы

Во-первых, сразу хочется отметить, что область применения метода не ограничивается одними только металлами и их сплавами. Он используется и для таких материалов, как:

  • Гранит, природный камень, прочие минералы.
  • Керамика и стекло.
  • Все металлы, включая даже титан и его сплавы.
  • Железобетон и бетон.
  • Все виды пластика и прочих синтетических материалов.

Что еще лучше, при этом удается достичь крайне малого расхода как самого сырья, так и комплектующих. Более того, при работе с опасными материалами именно резка водой металла является единственно допустимым методом, так как при этом нет искр, нет образования вредной пыли, полностью отсутствует возможность самопроизвольного воспламенения образующихся отходов производства.

Как это работает на практике?

Как мы и говорили, металлопрокат - не единственная сфера применения метода, но все же 70% работ идет именно в этой области. Сама технология основана на подаче воды с мелкодисперсионным под давлением на поверхность материала. Так что конкретно происходит во время резки? Вот основные технологические процессы:

  • Вода под огромным давлением подается в особо прочный резервуар.
  • В тот же момент туда «заправляют» абразив, обычно представленный мельчайшей фракцией песка.
  • После этого получившаяся смесь подается в сопло.
  • Струйка направляется на необходимую область и начинает резать материал.

Качество и скорость разрезки при таком подходе возрастают многократно. Время от времени лишь требуется добавлять абразив. Процесс этот полностью автоматизирован, никакого вмешательства обслуживающего персонала обычно не требуется.

Стоит учесть, что гидроабразивная резка позволяет достичь такой скорости, которая обычно достижима только при материалов. Но! Качество среза при этом таково, что его можно повторить, лишь используя лазер. Стоимость этих видов работ, и сложность используемого при этом оборудования сложно сопоставить, так как это совершенно разные «весовые категории».

Какое для этого используется оборудование?

Еще во времена Древнего Египта люди заметили, что вода способна кардинально изменять свойства тех материалов, которые подвергались ее воздействию в течение достаточно длительного времени. Даже твердые камни обкатывались до состояния гладких голышей, а на поверхности гранита и мрамора сравнительно быстро появлялись видимые углубления.

Впоследствии тот же принцип взяла на вооружение современная промышленность. Конечно, с древних пор существенно изменился порядок использования возможностей «оксида водорода»: во-первых, требуется обеспечить приемлемое давление воды, во-вторых - толщину и направление ее струи. Достигается это следующим образом:

  • Специальный насос очень высокого давления не только аккумулирует некоторый запас жидкости, но и подает ее к обрабатываемому материалу. Именно от мощности этого механизма зависят толщина и плотность стали, которая может быть разрезана. К самому насосу вода подается из обычной системы водоснабжения, причем (для предотвращения перерывов) желательно осуществлять ее сразу из нескольких источников.
  • За толщину струи отвечает специальный регулятор мощности. Скорость разрезания и толщина обрабатываемого материала зависят не только от его настроек, но и от характеристик используемого абразивного материала. Чтобы «разделывать» что-то более вязкое, приходится использовать трехфазный наполнитель, для простой же стали достаточно лишь воды и наполнителя, в роли которого, как мы уже неоднократно указывали, может быть использован самый обычный песок. Разумеется, что можно регулировать не только состав смеси… Какими еще параметрами характеризуется резка металла водой? Давление и скорость жидкости. Имейте в виду, что минимально приемлемая скорость воды должна достигать 1200 м/с при давлении около 4,7 т/см!

Прочее оборудование

Очень важны сопла. Их диаметр, а также используемые материалы напрямую зависят как от абразива, так и от скорости струи. при обработке металлов настолько высоко, что для этого могут быть использованы только высокопрочные сплавы. Сопла требуется менять, частота этого зависит от многих факторов. Одной из важнейших составляющих любого станка для «водяной» резки является смеситель. Именно от него зависит гомогенность получаемой смеси, а также качество срезов, наличие или отсутствие сколов на кромках обработанных деталей.

Заметим, что гидроабразивная резка невозможна без использования высокоточной автоматики. Особенностью этого способа обработки металла является конусность кромки, обусловленная свойствами воды при столь специфичных условиях ее применения. Чем выше скорость, тем больше этот показатель. Но! При повышении конусности прямо пропорционально снижается итоговое качество обработки материала. Чтобы снизить столь негативный эффект, может быть использована запатентованная технология Flow Dynamic Waterjet и подобные ей способы управления качеством продукции.

В чем заключается принцип работы «умных» технологий? Все сравнительно просто: автоматика сама определяет тип, вязкость и плотность обрабатываемого материала, а затем самостоятельно изменяет угол наклона и диаметр сопла. Только после этого начинается постоянно корректируемая резка металла песком с водой.

Подготовительные операции

Наконец, не менее важна система предварительной подготовки жидкости для последующего использования последней в системе резки металла. Чтобы максимально продлить сроки эксплуатации оборудования, а также для обеспечения максимального качества обработки, жизненно важна буквально кристальная чистота воды. Достигается это путем фильтрации через «высокоточные» фильтры, посредством которых из жидкости убирают все относительно крупные примеси с большой молекулярной массой.

Важно понимать, что различные производители предлагают разное гидроабразивное оборудование, возможности оснащения которого дополнительными функциями прямо зависит от стоимости станков. Так, расширенный функционал позволит при необходимости выполнять даже сложную фигурную резку, не говоря уже о более простых операциях.

Функциональные возможности резки водой

Во многих сферах искусства резка металла водой, цена которой значительно ниже лазерной обработки (от 15 рублей за метр) также нашла широчайшее применение. Дело в том, что одним из преимуществ этого метода является полное отсутствие сколов, а также нагревания поверхности, отчего получаемое изображение или профиль выходят в точности такими, какими их хотел видеть дизайнер или художник. Вот основные возможности, которые предлагает этот метод обработки материалов:

  • Нестандартная резка металла. Важно то, что при любом наклоне сопла срез получается очень качественным. Точность такова, что готовые детали после их изготовления можно использовать практически без подготовки.
  • Современные станки могут работать при минимальном вмешательстве человека, или же вовсе не требовать присутствия обслуживающего персонала. При помощи этого же оборудования можно вырезать детали самой сложной конфигурации, причем делать это в кратчайшие сроки, но с сохранением максимально возможного качества.
  • Особенно распространена обработка металлопроката. Так, станок для резки металла водой может срезать до 20 сантиметров среднеуглеродистой стали. Для титана показатели скромнее - в пределах 15-17 мм. Особо прочные сплавы - около 12 мм. Минимальный коэффициент приходится на долю меди и составляет всего 4-5 мм.
  • Декоративные элементы и украшения при использовании этого метода получаются не только очень качественными, но и дешевыми. Кроме того, конфигурация готовых изделий зависят не от опыта работника и не от «твердости руки», а исключительно от настроек. Если отклонение при резке не может превышать 0,5%, используют водой с ЧПУ.

В последние годы так все чаще режут трубы. Для этого применяют специальные станки, при помощи которых срез трубы получается изначально отполированным и очень гладким. Таким образом, гидроабразивная резка, услуги по которой предлагаются в любом крупном городе, становится все более распространенным и популярным методом обработки самых разных материалов.

Гидроабразивные станки с ЧПУ

Особенно расширить сферу применения данного метода помогли станки с ЧПУ, которые позволяют обрабатывать самые разные материалы, гибко настраивая качество работы, максимальную и минимальную толщину резки, а также прочие параметры.

Отклонения от заданных параметров получаются минимальными, чего практически нереально достичь стандартными способами резки. Принцип работы такого класса оборудования сводится к следующим действиям:

  • Сперва устанавливается соответствующее программное обеспечение, которое может быть разным для каждого типа материала. Программа автоматически подберет состав смеси, вид абразива и требуемый объем воды, давление и прочие параметры. За фигурную резку материалов отвечают специальные программы.
  • Как правило, дополнительная обработка готовой детали уже не требуется. Если параметры резки были подобраны неправильно или неточно, может наблюдаться некоторая шероховатость готового изделия. Но! Если используется станок с ЧПУ, который может самостоятельно подбирать параметры резки, такого практически не случается. В этом случае оборудование автоматически выбирает необходимый режим, ориентируясь на толщину, вязкость и плотность металла.
  • Помимо резки, такие станки позволяют высверливать отверстия различного диаметра и конфигурации. При этом мы слова повторяем уже описанное выше: если от оборудования требуется что-то особенное, необходимо выбирать те его модели, у которых есть соответствующие дополнительные функции.
  • Иногда эти станки могут использоваться не только для резки, но и для полировки готовых изделий и деталей, которые были сделаны на другом оборудовании.

Ручная резка

В некоторых случаях станками может управлять квалифицированный оператор. В этом режиме все настройки приходится выставлять в ручном режиме, что не всегда особенно удобно. Но имеют ручные способы резки металла и немало преимуществ, к числу которых относятся следующее:

  • Стоимость такой работы обходится примерно в полтора раза дешевле.
  • Профильное образование оператора при этом, как ни странно, не имеет особого значения. Дело в том, что ручное управление такими станками довольно просто, и не имеет большого количества сложных функций. Это оборудование используется в тех случаях, когда необходимо вырезать детали, имеющие простую геометрическую форму.
  • Функциональность станков при этом остается на прежнем уровне. Ровный срез, просверливание отверстий и прочие простые операции - все это можно делать и при ручном управлении. Кроме того, есть возможность обработки не только металлопроката, но и прочих материалов.

Надеемся, что вы поняли, как происходит резка металла водой. Данный метод чрезвычайно распространен в современной промышленности, с его помощью можно изготовлять детали практически любой формы и конфигурации.

Гидроабразивная резка металла и алюминия представляет собой такой способ их обработки, при котором рабочим инструментом является смесь абразива и воды, подаваемая под высоким давлением с высокой скоростью.

1 Суть и технология гидроабразивной резки

Базируется данная технология на принципе влияния эрозионного плана абразивных твердых элементов и водяного направленного высокоскоростного потока на материал, подвергаемый резке. С точки зрения физики процесс обработки заключается в отрыве частиц материала из полости реза скоростной струей частиц, находящихся в твердой фазе.
Эффективность данной операции, а также стабильность ее протекания зависят от грамотного подобранных значений:

  • размера и расхода абразивных элементов;
  • расхода и давления воды.

При сжатии обычной воды под нагрузкой примерно 4 тысячи атмосфер и последующем ее пропускании через малое по сечению сопло (до 1 миллиметра), ее скорость в 3–4 раза превысит скорость звука. Если направить такой поток сжатой воды на какую-либо поверхность, он будет представлять собой мощнейшее режущее приспособление. А если еще дополнительно добавить в поток специально подобранные абразивы, он сможет без труда разрезать изделия из прочного металла толщиной от 10 и выше сантиметров.

Гидроабразивная резка своими руками ничем не отличается от процесса, предлагаемого в наши дни многими фирмами и предприятиями. Для обработки материала нужно приобрести специальное оборудование, которое функционирует по следующему принципу:

  • в режущую головку агрегата при помощи нагнетательного механизма подается вода под давлением от 1000 до 1600 атмосфер;
  • через дюзу малого сечения (от 0,08 до 0,5 мм) вода на сверхзвуковой либо близкой к ней скорости (около 1200 м/с) идет в устройство, где происходит ее смешивание с карбидами кремния, частицами электрокорунда или песка, иного материала с высокой твердостью;
  • из смесительного отсека, который имеет диаметр (внутренний) сопла, полученная смесь подается на материал и разрезает его.

Остаточная энергия режущего потока гасится 70–100-сантиметровым слоем воды. Стоит отметить, что в некоторых агрегатах для резки абразивный материал смешивается с водой не в отдельной камере, а непосредственно в трубке, откуда он поступает на обрабатываемое изделие. При обычной гидрорезке абразивных частичек нет, и вода сразу направляется на поверхность, которую планируется разрезать.

2 Особенности резки изделий водой с абразивами

Струя при описываемой технологии обретает свой разрушительный потенциал в основном за счет абразивных составляющих потока. А уже сугубо транспортная функция ложится на воду. Частицы абразива при этом по размеру подбираются таким образом, чтобы быть не более 10–30 процентов от показателя сечения струи. Именно при таких условиях гарантируется стабильный поток и высокий эффект обработки.

В тех случаях, когда требуется получить малую шероховатость поверхности реза, используют частицы размером от 75 до 100 мкм, в остальных – от 150 до 250 мкм. В целом же, "идеальный" показатель абразива высчитывают как разницу между внутренними сечениями трубки для смешивания агрегата и водяного сопла, разделенную на два.

Выбор твердости абразивных элементов производят с учетом твердости детали, которая подвергается обработке, и вида материала, из которого она сделана. Не рекомендуется применять абразивы твердостью менее 6,5 единиц по шкале Мооса. При этом следует помнить, что режущая головка и ее отдельные компоненты изнашиваются намного быстрее, если используется очень твердый абразив.

Интересующий нас вид резки дает возможность обрабатывать:

  • гранит, прочный камень, мрамор и аналогичные материалы;
  • металлические, стальные, ;
  • армированные пластики;
  • используемые в космической и авиационной сфере титановые, композитные и алюминиевые сплавы, пластмассы с особо толстыми стенками;
  • деревянные изделия;
  • керамические конструкции;
  • любые стройматериалы, включая высокотвердую дорожную брусчатку, железобетон и бетон, блоки из гипсовых композиций;
  • изделия со специальными покрытиями;
  • бронированное и обычное стекло;
  • шестерни и аналогичные детали из металла.

Как правило, разные материалы режутся струей, содержащей определенные виды абразива:

  • армированный углеродными либо стеклянными волокнами пластик обрабатывают потоком с силикатным шлаком;
  • гранит, железобетон, стальные поверхности и прочие высокотвердые материалы – черным либо зеленым кремниевым карбидом, а также частицами электрокорунда;
  • сплавы на основе титана и высоколегированные стали – гранатовым песком.

Большую часть трубок для смешения воды и абразива выпускают из специальных сплавов, которые характеризуются высоким уровнем прочности. Эксплуатироваться без замены они могут до 200 часов непрерывной работы. А сопла производят, как правило, из драгоценных камней – рубина, сапфира, алмаза. Алмазные конструкции без проблем выдерживают до 1,5–2 тысяч часов использования, остальные рассчитаны на 150–200 часов.

3 Гидроабразивная резка металла и других материалов – плюсы и минусы технологии

К самым важным достоинствам процесса резки с применением струи воды и абразива относят:

  • отличное качество реза, обеспечивающее показатель 1,6 Ra (средняя величина шероховатости обработанной кромки материала);
  • абсолютная взрыво- и пожаробезопасность операции;
  • малые потери материалов при обработке;
  • отсутствие в легированных и и сплавах на их основе явления выгорания легирующих добавок;
  • отсутствие выделений газов при резке, как следствие, экологическая "безупречность" процесса;
  • в зоне обработки нет термовоздействия (материал в данной области нагревается максимум до 90 градусов по Цельсию);
  • большой спектр толщин материалов, которые можно разрезать (до 30 сантиметров включительно);
  • высокая производительность (допускается упаковывать материалы небольшой толщины в общую связку и производить их разрезание за один проход потока);
  • нет пригорания и плавления металлов в прилегающей к зоне реза областях, как, впрочем, и непосредственно в месте обработки;
  • режущая головка делает минимум холостых ходов, что увеличивает общую эффективность применения технологии.

Описываемая резка признается оптимальной для изделий из меди, алюминия, латунных сплавов, которые имеют высокую теплопроводность. При других вариантах их обработки необходимо применять мощные нагревающие источники, что влечет за собой повышение стоимости работ. Даже лазерная резка медных и алюминиевых конструкций не так эффективна, как гидроабразивная.

Кроме того, такая обработка подходит для:

  • выполнения скосов на обрабатываемых изделиях;
  • резки объемных конструкций и высокоточного разрезания деталей по сложному контуру.

К недостаткам использования гидроабразивного оборудования относят:

  • обусловленный огромной скоростью высокий уровень шума во время работы агрегата;
  • малая (по сравнению с лазерной и плазменной технологиями) скорость резки тонколистовой стали;
  • недолговечность головки для резания и иных компонентов оборудования;
  • высокие затраты на эксплуатацию установки.


Непрерывное расширение номенклатуры конструкционных металлических, неметаллических и композиционных материалов, используемых в промышленности и строительстве, требует новых технологий их обработки. Одной из таких технологий является резка высокоскоростной струей воды под большим давлением — водоструйная резка.

Возможность использования струи жидкости под сверхвысоким давлением в качестве режущего инструмента для обработки различных материалов впервые была описана в СССР. Произошло это в 1957 году. Но запатентован такой способ обработки материалов был только через четыре года, и не в Союзе, а в США.

Природный инструмент

Инструментом водоструйной резки материалов является определенным образом сформированная струя жидкости, исходящая из специального сопла диаметром 0,08-0,5 мм со сверхзвуковой скоростью (1000 и более м/с) и обеспечивающая рабочее давление на заготовку в 400 МПа и более. Поскольку расстояние от среза сопла до поверхности материала составляет несколько миллиметров, давление струи превышает предел прочности материала — за счет этого и осуществляется резка.

Существуют два способа водоструйной резки материалов:

  • резка водой, или гидрорезка — waterjet cutting;
  • гидроабразивная резка (вода плюс абразив) — abrasive waterjet cutting.

Наличие абразива в струе увеличивает ее технологические возможности — жидкостно-абразивной суспензией можно резать твердые и труднообрабатываемые материалы значительной толщины.

Режимы водоструйной резки, осуществляемой обоими способами, могут быть расширены за счет подвода к струйной головке хладагента, способствующего образованию в струе льдинок, которые придают ей абразивные свойства.

При водоструйной резке учитывается и угол атаки — угол между направлением струи и обрабатываемой поверхностью. Максимальная режущая способность и производительность процесса достигаются при угле атаки в 90°.

Материалы и области применения

С помощью водоструйной резки могут обрабатываться практически все материалы: бумага и картон, ткани, кожа и резина, стекло и керамика, гранит и мрамор, бетон и железобетон, все виды полимерных материалов, в том числе композиционные, фольгированные и металлизированные пластики, все виды металлов и сплавов, включая труднообрабатываемые — нержавеющие и жаропрочные стали, твердые и титановые сплавы.

За рубежом спектр отраслей, в которых сегодня применяются технологии водоструйной резки, широчайший. Прежде всего это: космическая отрасль и ракетостроение, оборонная промышленность, авиа-, судо-, автомобиле- и приборостроение, электротехника и микроэлектроника, легкая (в том числе кожевенно-обувная) и пищевая промышленность, строительство, медицина.

Особенно часто водоструйная резка применяется для осуществления следующих технологических операций (здесь приводится далеко не полный перечень):

  • в оборонной промышленности — утилизация устаревших образцов вооружений (разрезание корпусов ракет, боевой техники, судов и подводных лодок), разрезание корпусов снарядов и вымывание взрывчатых веществ;
  • в электронной промышленности — резание электронных плат (применение водоструйной резки позволило достичь размера пропила до 0,1 мм и обеспечить отсутствие пыли, а также решить проблему расслоения материала), снятие облоя с корпусов микросхем;
  • в автомобильной промышленности — резание фальш-потолков, ковриков, приборных досок, бамперов из пластика и пр.;
  • в строительстве — резка бетонных конструкций для их последующего демонтажа, расчистка швов и т. д. Водоструйная резка часто используется для производства сложных контуров в мраморе и граните (узкий пропил позволяет создавать инкрустации при изготовлении декора);
  • в пищевой промышленности — резка продуктов глубокой заморозки, различных плотных пищевых продуктов, шоколада.

Плюсы и минусы

Основные достоинства водоструйной обработки состоят в следующем.

1. Нивелирование теплового воздействия. Генерируемое в процессе резания тепло практически мгновенно уносится водой. В результате не происходит заметного повышения температуры в заготовке. Эта характеристика является решающей при обработке особо чувствительных к нагреву материалов. Небольшие сила (1-100 Н) и температура (+60...+90°С) в зоне резания исключают деформацию заготовки, оплавление и пригорание материала в прилегающей зоне. Заметим, что ни одна технология, кроме гидроабразивной резки, не может обеспечить отсутствие термического влияния на металл вблизи пропила.

2. Универсальность обработки. Жидкостно-абразивная струя особенно эффективна при обработке многих труднообрабатываемых материалов, таких как, например, титановые сплавы, различные виды высокопрочных керамик и сталей, а также композитных материалов. При гидроабразивной резке последних не создается разрывов в структуре материала, который, таким образом, сохраняет свои первоначальные свойства. Именно при помощи струи воды режутся различные сэндвич-конструкции. Гидроабразивные системы способны резать металлы толщиной до 300 мм, камень и бетон — до 1000 мм. При этом достигается достаточно высокая точность обработки — 0,1 мм при резке металлов толщиной до 100 мм.

3. Способность воспроизводить сложные контуры и профили. При высокоструйной обработке можно воспроизводить очень сложные формы или скосы под любым углом. Струя жидкости по своим техническим возможностям приближается к идеальному точечному инструменту, что позволяет обрабатывать сложный профиль с любым радиусом закругления, поскольку ширина реза составляет 0,1-3,0 мм.

При резании хрупкого материала — стекла — гидроабразивная обработка позволяет создавать неповторимые другими технологиями формы и контуры; хотя водоструйная технология и уступает алмазу, когда делаются прямые резы стекла, зато никакая другая технология не позволяет получать сложные контуры непосредственно в процессе резания.

4. Хорошее качество поверхности. Можно получать финишную поверхность с шероховатостью Ra 0,5-1,5 мкм, т. е. во многих случаях отпадает необходимость в дополнительной обработке.

5. Технологичность процесса. Инструмент резки (струя воды или вода плюс абразив) не нуждается в переточке; ударная нагрузка на изделие минимальна, отсутствует обратная реакция на режущий инструмент, так как между изделием и инструментом нет непосредственного контакта; различные операции (например, сверление и резку) можно выполнять одним и тем же инструментом; низкое тангенциальное усилие на деталь позволяет в ряде случаев обойтись без зажима этой детали; существует возможность резки на расстоянии около 200 метров от насоса, а также возможность резки от одного насоса высокого давления одновременно двумя и более режущими головками на одном столе или несколькими головками на разных столах; резку можно осуществлять на высоте и на глубине до нескольких сотен метров, в том числе и под водой.

6. Экономичность процесса. Скорость резания — высокая. (Скорости резки различных материалов зависят от многих факторов, средние значения этих скоростей для различных материалов приведены в таблице). Рез можно начинать в любой точке заготовки и при этом не нужно предварительно делать отверстие. Малая ширина реза позволяет экономить дефицитные материалы при их раскрое. Среднее потребление воды в абразивно-жидкостном режущем устройстве невелико — около 3-4 л/мин, несмотря на высокие давления использования (400 МПа и более).

7. Автоматизация процесса. Достаточно легко использовать системы компьютерного управления, оптические следящие устройства и полномасштабных шестикоординатных роботов.

8. Доступность. Использование таких относительно недорогих компонентов, как вода, и, например, кварцевый песок в качестве абразива, делает процесс доступным.

9. Безопасность. Поскольку нет тепла, накапливаемого при абразивно-жидкостной струйной обработке, процесс взрыво- и пожаробезопасен. Отсутствует радиационное излучение, опасность вылета шлаковых или мелкодисперсных частиц. Переносимая по воздуху пыль фактически устранена. Уровень шума колеблется в пределах 85-95 дБ.

К недостаткам технологии гидрорезания можно отнести: конструктивные трудности, возникающие при создании высокого давления жидкости, довольно низкую стойкость сопла и сложность его изготовления.

Факторами, сдерживающими практическое внедрение водоструйной техники на предприятиях, являются:

  • высокая энергоемкость по сравнению с рядом других типов резания;
  • несоответствие реальных характеристик заявленным (например, меньшая скорость струи, не позволяющая выполнять процесс резания определенных материалов);
  • отсутствие у некоторых потенциальных потребителей необходимого масштаба производства, что делает установку гидрорежущего оборудования нерентабельной;
  • довольно высокая стоимость по сравнению с другим, например, электромеханическим, оборудованием для резки.

Скорость водоструйной резки, м/мин

Толщина материала, мм

Алюминий

Нержавеющая сталь

Луч или струя?

Водоструйная резка — альтернатива не только механической, но и лазерной, плазменной, ультразвуковой резке, а в некоторых случаях это, как уже говорилось, и вовсе единственно возможный вид обработки.

В настоящее время водоструйная и лазерная резка машиностроительных материалов, применяемых в сходных областях, являются конкурирующими технологиями. В том и в другом случаях режущий инструмент формируется в самой машине за счет конструктивных особенностей соответствующих узлов, а затем, перемещаясь по энергетическому каналу или трубопроводам, подходит к узлу, где процесс его формирования завершается. При применении обеих технологий отпадает необходимость в хранении, заточке и перестановке рабочего инструмента — он постоянно обновляется за счет непрерывности его образования во времени.

Не углубляясь в анализ достоинств и недостатков этих технологий, необходимо отметить, что лазерное излучение более универсально (резка, маркировка, упрочнение и т. п.), хотя и область применения высокоскоростной струи жидкости не ограничивается только гидрорезанием (в ряде случаев импульсная струя жидкости используется для упрочнения труднодоступных поверхностей сложной формы).

Определенное преимущество гидрорезания перед лазерной резкой состоит в отсутствии области термовлияния на кромках обработанных деталей, но не всегда это условие является определяющим. Так, установлено, что при лазерной резке деталей из конструкционных сталей типа 20, 30 ХГС и др. повышается их усталостная прочность и долговечность по сравнению с механически вырезанными деталями.

Возникает закономерный вопрос: а существуют ли какие-либо рекомендации по использованию той или иной технологий? Опыт производителей и пользователей говорит: да, существуют.

С точки зрения экономической целесообразности применение водоструйной технологии наиболее оправданно при резке хрупких (стекло, камень) заготовок толщиной 40-100 мм, фанеры, древесины, композиционных материалов во всем диапазоне допустимых толщин, при больших объемах раскроя: нержавеющей стали при толщине листа свыше 6-10 мм, меди — свыше 2-3 мм, алюминиевых сплавов — свыше 5-6 мм.

При контурном раскрое тонкого листа практически всегда более эффективны лазерные системы, поскольку себестоимость лазерной резки заготовок с малой толщиной значительно ниже, чем себестоимость резки гидроабразивной.

В конечном счете, области применения лазерной и водоструйной технологий резки в машиностроении будут разделены их технологическими и экономическими показателями. Бесспорно одно: при сегодняшнем уровне развития машиностроения объемы применения водоструйной резки (в США, Европе, странах АТР) постоянно увеличиваются.

Основные компоненты гидрорежущего оборудования

В комплекс для водоструйной резки входят: насос высокого давления; режущая головка; координатный стол и приводы перемещений режущей головки; разводка высокого давления; система подачи абразива (для гидроабразивной резки); система числового программного управления. Дополнительно комплекс может оснащаться: устройством для предотвращения столкновений режущей головки с заготовкой; системой из нескольких режущих головок; механической системой предварительного просверливания; ловушкой струи воды, гасящей ее энергию и служащей также для сбора отработанного абразива, и рядом других.

Гидрорежущее оборудование обладает разной степенью универсальности и автоматизации, в том числе изготавливается и в виде роботизированных комплексов.

Насос высокого давления обеспечивает создание сверхзвуковой струи жидкости как режущего инструмента. Разработана универсальная принципиальная гидравлическая схема, где в качестве усилителя давления используется специальный мультипликатор двустороннего или одностороннего действия (рис. 1). Выбор компоновки зависит от конкретных условий обработки (например, от допустимой величины перепада давления, требуемого расхода жидкости), что позволяет достичь заданных результатов как по производительности, так и по качеству. Кроме того, используются стандартные регулирующие, распределительные, контрольные и вспомогательные гидравлические устройства.

Для обработки крупногабаритных или отдельно стоящих изделий в условиях завода, порта, полигона, для выполнения работ под водой насос высокого давления может монтироваться на любом транспортном средстве — электрокаре, автомобиле, судне. В этом случае подвод жидкостной струи к изделию, расположенному, как правило, на некотором расстоянии от насоса высокого давления, осуществляется с помощью гибкого шланга.

Режущая (струйная) головка осуществляет окончательное формирование высоконапорной тонкой струи как режущего инструмента по своим геометрическим и энергетическим параметрам. Конструктивные особенности струйной головки (взаиморасположение деталей, характер их соединения и герметизация), оказывая влияние на гидродинамические характеристики и компактность формируемой струи, определяют качество и надежность ее работы.

Существует множество конструкций струйных головок для гидрорезания материалов, что объективно свидетельствует о многообразии предъявляемых к ним эксплуатационных требований и одновременно — об отсутствии оптимальных конструкций. Приведем следующую классификацию:

  • струйные головки с улучшенными динамическими характеристиками для жидкостной обработки материалов (снабжены специальными конструктивными элементами);
  • жидкостно-абразивные струйные головки. Наиболее совершенными считаются конструкции со свободным вводом абразива в рабочую струю жидкости с минимальными нарушениями их гидродинамических характеристик;
  • струйные головки с подводом хладагента с целью охлаждения истекающей жидкости. В конструкцию введены каналы для подвода хладагента, предназначенного для придания абразивных свойств рабочей жидкости. Это позволяет не только усилить режущие возможности струи за счет образования льдинок в струе, но и повысить износостойкость сопла благодаря образованию замороженного слоя на его поверхности;
  • комбинированные сопловые головки.

На рис. 2 показаны принципиальные схемы режущих головок как для гидро-, так и для гидроабразивной резки.

Кстати, опция — до четырех режущих головок, работающих одновременно, — используется в конструкции систем водоструйных установок, выпускаемых практически всеми ведущими мировыми производителями оборудования.

Формирование сверхзвуковой струи жидкости как режущего инструмента осуществляется с помощью сопла . Разработана универсальная методика анализа гидравлических характеристик сопел с различными профилями внутреннего канала. Теоретические и экспериментальные исследования показали, что наиболее рациональным внутренним профилем сопла, повышающим производительность водоструйной обработки различных материалов примерно на 20%, является катеноидальный профиль.

Обычно сопла изготавливаются из искусственных камней — сапфира, алмаза, корунда. Их стойкость составляет 250-500 часов. На рис. 3 показана режущая головка модели Paser 3 американской компании Flow International Corporation.

Разводка высокого давления. Вода под высоким давлением подается от насоса высокого давления к режущей головке системой неподвижных и подвижных труб. Для обеспечения плотности соединений при движении портала и рабочей головки используются специальные шарниры высокого давления или спиральные трубки специальной формы.

Система подачи абразива. Используются две системы подачи абразива — вакуумная, работающая по принципу пульверизатора, и та, что работает под давлением. Абразив засыпается в бункер, находящийся рядом с рабочим столом, и подается к рабочей головке по гибким шлангам. В качестве абразива обычно используют порошки твердых сплавов, карбидов, окислов. Выбор абразива зависит от вида и твердости разрезаемого материала. Так, для высоколегированных сталей и титановых сплавов применяют особо твердые частицы граната, для стекла — соответствующие фракции обычного песка, для пластмасс, армированных стекло- или углеродными волокнами, — частицы силикатного шлака.

Производители

Российский рынок оборудования для водоструйной резки материалов способен удовлетворить практически любые запросы. Представленная на нем продукция таких специализированных зарубежных фирм, как американской Flow International Corporation (с множеством филиалов во всем мире), шведской Water Jet Sweden АВ, итальянской Waterjet Corporation, чешской PTV, а также таких известных в мире производителей оборудования для обработки листа, как швейцарский концерн Bystronic, германская компания Trumpf, позволяет решать практически любые задачи. Тем не менее, данный сегмент рынка оборудования развивается достаточно активно, о чем свидетельствует появление на нем в последнее время продукции еще целого ряда зарубежных производителей, среди которых компании: Sato Schneid-systeme (Германия), Aliko (Финляндия), Trenntec (Германия), ESAB Welding & Cutting Productions (Швеция), Digital Control (Франция).

Из производителей гидравлических устройств и, в первую очередь, насосов высокого давления следует отметить компанию Ingersoll Rand (США) — безусловного мирового лидера продукции этого класса. Естественно, что такие ведущие производители гидрорежущего оборудования, как, например, Water Jet Sweden АВ, в качестве основных узлов, связанных с созданием самого потока струи, используют оборудование Ingersoll Rand. Например, насос высокого давления модели Strimline серий SL IV этой фирмы создает необходимое давление воды в 4000 бар, которое затем с помощью сапфира с диаметром проходного сечения 0,08-0,5 мм превращается в кинетическую энергию струи со скоростью 900 м/с.

Лидером российского гидрорезания является город Владимир, где на базе разработок Владимирского госуниверситета в исследовательской лаборатории гидрорезания и ОАО СКТБ ПО «Вектор» создано несколько моделей установок для водоструйной резки.

Промышленные установки выпускают ЗАО «Лазерные комплексы» (г. Шатура), ОАО «Туламашзавод», ОАО ЭНИМС (Москва), белорусское СП ООО «СПожиток». Еще недавно некоторые специализированные системы водоструйной резки производились Институтом горного дела (г. Хабаровск), украинским НПП «Индрис», Московским университетом, АО «Пеллемаш», однако сегодня об этой продукции ничего не слышно. Так или иначе, какой-никакой выбор и среди отечественной продукции есть. Хотя, положа руку на сердце, следует признать, что до лучших мировых образцов наше оборудование пока не дотягивает.

Лидер

Группа Flow International в 1971 году выпустила первую в мире установку водоструйной резки, а в 1981-м разработала метод введения абразива в водную струю, что значительно расширило возможности резания. По оценкам специалистов, станки компании имеют наилучшую точность позиционирования (порядка 0,07-0,08 мм), а, следовательно, и точность обработки.

Продукция компании позволяет решать практически все проблемы резки:

  • система WMC Waterjet Machining Center предназначена для любой двумерной резки, в том числе в промышленных масштабах. Ее главная отличительная особенность — увеличение производительности, достигающееся за счет запатентованной быстроподъемной оси Quicklift Z со встроенным сенсором и противоударным устройством;
  • для небольших работ по металлу и камню создана установка Inregratred Flaying Bridge;
  • компактная установка Bengal предназначена для водоструйной и гидроабразивной резки и подходит для лабораторного применения, изготовления инструментов и выпуска небольших партий изделий;
  • модульная система трехмерной резки Dragon применяется как для водоструйной резки мягких материалов, так и для гидроабразивной резки металла, камня, стекла, композитов.

Компания разработала новую технологию гидрорезания, позволяющую, как утверждают разработчики, увеличить скорость резки практически на 300%. Система Dynamic Waterjet, обеспечивающая активный контроль точности, создана на основе математической модели, используемой для управления положения «руки» с рабочей головкой. Эта система автоматически исключает образование скосов при резке и обеспечивает требуемую точность детали с учетом заданных допусков. Система исключает необходимость дополнительной обработки после водоструйной резки и позволяет сократить машинное время резки металлов и композиционных материалов толщиной 1,25-480 мм. Кроме того, благодаря повышению точности резки, сокращаются потери листового материала при раскрое.

Альтернатива

Несмотря на признанный статус лидера, конкуренты у компании Flow есть, и весьма серьезные.

Одним из них является шведская компания Water Jet Sweden АВ. В качестве сопла фирма Water Jet применяет собственную запатентованную режущую головку, а также использование сопла Avtoline фирмы Ingersoll Rand. В настоящее время наиболее популярна в механическом секторе установка NC3015S с используемой поверхностью стола 3010 x 1510 м. Управляемая ось Z — стандарт для всех систем. А выпускаемые фирмой установки с четырьмя и пятью управляемыми осями позволяют осуществлять такую обработку, как, например, прорезание пазов с профилем притуплённого конуса.

Начав работу, как дилер фирмы Flow, компания PTV за прошедшее время освоила собственное (т. е. чешское) производство большей части этого оборудования. В первую очередь это относится к координатным столам, которые сегодня проектируются и изготавливаются на фирме PTV. Кроме того, все вспомогательное оборудование также проектируется и производится в Чехии. Сейчас PTV закупает в США только гидравлическое оборудование высокого давления — насосы, аккумуляторы, трубки и т. п., что составляет менее 50% от общей стоимости системы. Компания PTV использует на своих установках разработанное чешскими фирмами программное обеспечение в сочетании с системами управления фирмы Siemens.

Диапазон возможных скоростей резки (т. е. фактически регулируемый диапазон скоростей передвижения режущей головки над столом) на установке фирмы PTV колеблется от 1 до 30000 мм в минуту, что делает возможным качественную и точную резку на одной и той же установке деталей самых разных размеров и толщин.

Универсальная установка итальянской компании Waterjet Corporation для гидроабразивной резки WJ 1630/50 портального типа создает давление струи в 4130 бар. Режущая головка способна вести пятикоординатную обработку. Другие портальные машины компании предназначены для резки труб с двойной рабочей областью (резка шестиметровых труб осуществляется с автоматическим вращением трубы и задним упором), а также для роботизированных операций (станок с двумя режущими головками и с автоматической загрузкой и выгрузкой).

Устройства гидроабразивной резки Byjet Bystronic имеют мощную специализированную систему ЧПУ, обеспечивающую автоматический выбор и оптимизацию параметров обработки при резке различных материалов по любому контуру, автоматическое управление подачей абразива и давлением воды в реальном времени в зависимости от особенностей конфигурации обрабатываемого контура, а также свойств материала и толщины. Благодаря применению специального дозатора системы Byjet Bystronic могут использовать абразив практически любого типа с, зернистостью от 0,05 до 0,3 мм. Применение специальной системы управления насосом высокого давления обеспечивает отсутствие пульсаций воды на выходе, что позволяет достичь наилучшего качества обработки.

В потенциале

И еще несколько слов об установках, представляющих, по нашему мнению, потенциальный интерес для отечественных производителей.

Установка Quickjet, созданная германской Trenntec, имеет жесткую сварную конструкцию, которая в сочетании с закаленными и шлифованными направляющими обеспечивает точность позиционирования 0,1 мм на 1 м длины и точность воспроизведения (повторяемости) в пределах 0,05 мм. Регулирование по оси Z можно осуществлять вручную на длине 150 мм. Имеется насос высокого давления, система воздушного охлаждения, резервуар с абразивом, вмещающий 50 кг, устройство автоматической подачи абразива в режущую головку. Расход воды — 2,6 л/мин под давлением 380 МПа.

Французская Digital Control представляет станок для водоструйной резки под давлением 380 МПа. Для мягких материалов предназначена резка водяной струей, а для твердых материалов — гидроабразивная резка. Площадь обработки — 1500 х 1000 мм. Станок оснащен насосом высокого давления мощностью 22 кВт, режущей головкой с системой подачи абразива и цифровой системой управления Cyborg 2000. В системе управления имеется постпроцессор для преобразования файлов, для обеспечения возможности подготовки программ вне станка, для обеспечения ручного или автоматического раскроя листов.

Отечественная продукция

Исследовательская лаборатория гидрорезания (г. Владимир) представляет полуавтоматический станок с ЧПУ для разрезки листовых труднообрабатываемых материалов (стекло-, угле-, боропластиков, титана, керамики, стекла, магнитных и твердых сплавов), вырезки отверстий произвольной формы и деталей сложного контура. Станок состоит из двух модулей: привода главного движения — станции высокого давления и привода подач — двухкоординатного стола. Привод подач оснащен системой ЧПУ, обеспечивающей точное перемещение стола по двум взаимно перпендикулярным координатам и получение отверстий и деталей различной конфигурации по заданной программе.

Кроме того, владимирская лаборатория производит полуавтоматический станок с ЧПУ для обработки неметаллических материалов (кожи, картона, винила, резины и др.), полуавтоматический станок для снятия облоя с корпусов микросхем, полуавтоматический станок для очистки барабанов множительной техники, четырехпозиционный станок для очистки капиллярных отверстий наконечников, двухконтурный станок для расснаряжения военной техники.

ОАО «Туламашзавод» представляет технологическую установку гидроабразивного резания, предназначенную для резки сложнофасонных форм деталей толщиной до 150 мм из любых металлов и сплавов, раскроя неметаллических листовых материалов (мрамор, гранит, пластик, картон, стекло, керамика) со следующими габаритами рабочей поверхности стола — длиной до 4000 мм, шириной до 2000 мм.

Рабочая зона обработки установок ЗАО «Лазерные комплексы» ГЛ-250/5М и ГЛ-400/ЗМ составляет от 1200 х 800 мм до 6000 х 1500 мм.

ОАО ЭНИМС принимает заказы на изготовление как отдельных узлов установок для водоструйной резки, так и всей установки в комплекте.

Цена успеха

На вопрос о стоимости подобного оборудования однозначный ответ получить не просто. Все зависит от модификации модели, комплектации, наличия-отсутствия отдельных функций и т. д., и т. д. Разброс может быть весьма значительным. Но в любом случае стоить дешево такая техника не может. Например, в компании, представляющей интересы чешской фирмы PTV, называет такие цифры: от 5 до 10 миллионов рублей за установку. Представители компании утверждают, что при нормальной загрузке системы (в среднем 2500-3000 рабочих часов в год) время возврата инвестиций (как говорят в США, «payback time») составит полтора-два года. Отечественная продукция дешевле. В частности, ОАО ЭНИМС называет от 40 до 100 тысяч у. е. (читай: долларов или евро). В любом случае, делая выбор, стоит учесть информацию Water Jet: эксплуатационные расходы системы гидроабразивной резки типа NC3015S составляют примерно 0,26 тех же условных единиц в минуту.

А в заключение сказать, пожалуй, можно только одно. Если верить многочисленным организациям, анализирующим мировой рынок продукции машиностроения, производство оборудования для водоструйной резки — самый быстрорастущий сегмент станкостроительной промышленности.

Водно-абразивная резка металла – это самая современная и прогрессивная технология обработки. Сердце системы водоструйного резания — насос высокого давления. На сегодня уже разработаны экспериментальные станки с давлением воды 6000 атмосфер.

Проходя сквозь сопло (материалом может выступать: рубин, сапфир или алмаз) толщиной 0,1 мм, вода набирает скорость в три раза большей скорости звука и образует тонкий сфокусированный поток, который может резать практически все металлы.

При гидроабразивной резке металла, толщина металла может быть до 300 мм.

Главным преимуществом технологии резания водной струйного является отсутствие нагревания изделий, то есть термическое воздействие на материал — отсутствует, что исключает напряжение и изгиб обрабатываемой детали. В итоге появляются резы очень отличного качества, что делает не нужным последующую дорогостоящую обработку.

Некоторые металлы нельзя резать лазером из-за их отражения, а при плазменной резке – нельзя использовать токопроводящий материал. Тут и понадобится гидроабразивная резка, которая является прогрессивным способом резки. Но она предполагает намокание изделия, что может плохо отразится для металле, подверженному коррозии.

Принцип гидроабразивной резки металла имеет самое главное преимущество — тонкая, как нить, струйка, позволяет создавать значительно меньшие потери металла по сравнению с обычной резкой.

Большим недостатком гидроабразивной резки металла является очень высокие затраты на резку: 1 час работы выйдет в 1500 руб. К тому же все детали очень скоро вырабатывают свой ресурс из-за большого давления. Так же недостатком является то что все детали требуют ежедневного осмотра и даже ремонта ремонта. В общем, если есть решение купить станок гидроабразивной резки, то такая резка металла водой своими руками, приводит к постоянным высоким затратам.

Процесс гидроабразивной резки

Собственно процесс гидроабразивной резки состоит из четырех фаз.

  • Фаза № 1. Образования изогнутой фронтальной поверхности резания. Сфокусированный гидроабразивный струя прорезает в заготовке узкую щель – струя постепенно вводится в заготовку и с постоянной скоростью резания движется по ней.
  • Фаза № 2. Начало образования ступеньки (обрыва). Угол между струей и поверхностью резания постепенно увеличивается.
  • Фаза № 3. Завершение образования ступеньки (обрыва), смещение ее вниз. Снятие слоя материала происходит лишь на небольшом отрезке фронтальной поверхности резания.
  • Фаза № 4. Восстановление исходного состояния. Ступенька довольно быстро «вдавливается» в заготовку. По мере смещения ступеньки вниз снова образуется ровная поверхность резания – начальное состояние резки восстанавливается.

Описанный выше процесс имеет циклический характер.

В процессе резки гидроабразивной струей вода выполняет лишь функцию носителя. Резки обусловлено съемом (скалыванием) определенного количества слоев материала, которое вызвано ударами твердых частиц абразива. Наличие абразива в струе увеличивает его технологические возможности, позволяет резать металл.

Наиболее распространенными абразивами являются кварцевый песок, гранатовый абразив, оливин, карбид кремния и электрокорунд. Широкое применение указанных выше абразивных материалов объясняется их относительной дешевизной, твердостью и высокими режущими свойствами. Например, гранатовый абразив является твердым и тяжелым; благодаря этому он является фактически устойчивым в течение всего цикла использования. Это дает возможность получать высокое качество среза с определенной глубиной шероховатости, в зависимости от размера зерна и скорости резки. На основе высокой вязкости такой абразив неоднократно может быть использован повторно. Отечественные предприятия в основном используют кварцевый песок.

Как и при любом виде обработки материалов, наиболее благоприятные условия для освоения процесса гидроабразивной резки могут быть достигнуты за счет выбора его оптимальных технологических параметров: давления рабочей жидкости, формы и диаметра отверстия водяного и абразивного сопел, количества абразива, подаваемого расстоянии от сопла к разрезающей поверхности, скорости подачи, качества поверхности резки. Анализ этих параметров требует детального изучения и имеет существенное значение при исследовании данной технологии.

Какое давление воды нужно для резки металла

Вода, нагнетаемая насосом должна иметь давление порядка 1 500–6 000 атмосфер. Выходя через узкое сопло с околозуковой или сверхзвуковой скоростью (до 900–1200м/c и больше), водная струя направляется в смесительную камеру, где происходит смешивание с частицами абразива. Образованная струя выходит из смесительной трубки с диаметром внутри 0,5–1,5 мм и режет метал. Для гашения остаточного давления струи применяется слой воды толщиной 75–100 см.

Недостатки технологии

К недостаткам данной технологии относят:

  • конструктивные трудности, проявляющиеся при создании высокого давления жидкости;
  • незначительную стойкость водяного и абразивного сопел – быстрое стирание (ресурс отечественных сопел составляет 50 час., иностранных – 500-1000 час.);
  • сложность изготовления сопла;
  • образования косины до 1,5 по высоте заготовки.

  • а – при высокой скорости резания;
  • б – при очень низкой скорости резки — верхние кромки реза имеют незначительное закругление

При износе абразивного сопла или увеличении скорости резки ширина щели увеличивается – профиль щели имеет слабо выраженную V-образную форму. При очень маленькой скорости резки профиль щели имеет А-образную форму – турбулентность вызывает эрозию материала. Случай считается положительным, если нужны закругленные верхние кромки.

  • а – при расстоянии между соплом и заготовкой 2-4 мм;
  • б – при расстоянии между соплом и заготовкой больше 4 мм

Известная поговорка о том, что вода камень точит, умалчивает о том факте, что она ещё и металл режет, да не за сотни лет, а моментально. Много сказано о резке металла своими руками при помощи плазматронов – водой, превращающейся под воздействием электричества в дугу плазмы. Но существует ещё один способ, дающий более чистый срез, не нуждающийся в финишной обработке – это . Разделение детали водой без специальной подготовки жидкости, даст менее гладкие края заготовок, тогда придётся их обрабатывать дополнительно своими руками при помощи инструментов с применением силы. При условии, что водно-песчаная смесь, подаваемая под давлением, применяется для резки металла толщиной до 20 см, лучше чтобы края заготовок обрабатывать дополнительно не приходилось. А всего-то подготовительный процесс заключается в фильтрации воды.

Преимущества гидроабразивной струи

Гидроабразивная резка была разработана для изготовления деталей для авиации. Впоследствии этот метод был назван лучшим в обработке тугоплавких материалов и сталей. Теперь он используется на производствах, где работает оборудование с ЧПУ. Не меньшее значение резка водой имеет для автомастерских и изготовления предметов быта своими руками, где применяется оборудование без крепежей.

Низкий температурный режим работы даёт преимущества в обработке стали. Резка металла плазмой или газом приводит к сильному нагреву металла, что вызывает окисление и прочие побочные эффекты (в зависимости от индивидуальных характеристик металла). Воздействие на металл абразивных частиц, подаваемых под большим давлением с водой, тоже приводило бы к нагреву листа и его оплавлению, но резка происходит настолько быстро, что сравнить её по чистоте реза можно только с лазером, а по скорости с плазмотроном. Прогрев обрабатываемой поверхности при работе соответствующий – он настолько незначителен, что даже окалин нет. Как нет зависимости от размера оборудования и способа работы — без участия человека или проведение реза оборудованием на ручном управлении.

Приятным моментом при проведении работ своими руками состоит в том, что никаких сильных запахов, дыма и пыли оборудование не производит. Держать под рукой запасные режущие инструменты так же нет необходимости, это оборудование работает без твёрдых резцов – только очень мелкий песок с водой. Скальпелем, отделяющим толстенные куски металла с хирургической точностью, выступает вода, поступающая в сопло под давлением, на выходе из сопла она насыщается абразивными микрочастицами, при мгновенном смешивании получается мощная режущая смесь.

Весь цикл резки как на заводском оборудование с ЧПУ, так и своими руками на обычном станке проводится в один этап. Тонкие и толстые, тугоплавкие и тягучие материалы режутся на одной и той же скорости, без каких-либо ограничений. Станки с возможностью обрабатывать насколько деталей одновременно – это возможность в кратчайшие сроки провести необходимую обработку металла и стекла, пластика и резины, благодаря тому, что нет необходимости перенастраивать оборудование. Детали из материалов разной твёрдости при необходимости будут обработаны за один рабочий цикл.


При обработке материалов своими руками, обрабатывать их поочерёдно выгоднее в плане экономии времени, которое ушло бы на закреплении материалов на рабочей поверхности, а комбинированная деталь, состоящая из нескольких совершенно разных материалов, легко и точно будет разрезана при помощи гидроабразивной смеси подаваемой под высоким давлением.

Применение станков гидроабразивной резки

Оборудование, работающее на гидроабразивной взвеси применяется для:

  1. Художественной резки металла водой, и прочих материалов с различными техническими характеристиками. Тонки е и широкие детали можно резать не только под прямым углом. Изменение наклона режущей субстанции не скажется на чистоте краёв среза. Ни один из материалов, которые режет это оборудование, не требует последующей обработки, деталь из-под гидрорезца выходит готовой на 100%.
  2. Самые сложные элементы, повторяющиеся в нескольких фрагментах и детали, требующие повышенной точности, лучше выполнять на программируемом станке резки водой. Компьютерная программа лучше человека управится с точными задачами по обработке деталей, не терпящих отклонений. Для творчества и изготовления предметов, не задействованных в сложных механических агрегатах, вполне подойдёт оборудование на ручном управлении.
  3. Максимальная толщина металла для резки водой, как уже было сказано ранее, составляет 200 мм, но есть и исключения. Гидроабразивной взвесью можно резать медь толщиной всего 5 мм, тугоплавкие сплавы до 12 мм, титан толщиной до 17 мм. Если посмотреть на сферу применения этих металлов и их стоимость, то не так уж велика потеря.
  4. При необходимости сделать своими руками украшение из меди или латуни, то верхний слой убирается поэтапно. Так что углубление в 1 см можно сделать за 2 прохода вместо одного. Как говорят скульпторы, работающие над шедевром с резцом – отсечь всё ненужное. Тот же принцип работы и с гидроабразивным режущим элементом. Для точного воспроизведения детали лучше воспользоваться станком на компьютерном управлении.

Станки без ЧПУ работают на ручном управлении, настройка станка для резки целиком производится оператором, что может дать некоторые неточности, если угол резки выставлен неверно. Но такой станок не требует никаких специфических знаний. Он значительно дешевле своего управляемого компьютером собрата. Мало функциональное оборудование, разобраться в его настройках можно достаточно быстро. Простые и сложные линии, а так же стандартные геометрические фигуры на этом станке может выполнить своими руками каждый, после краткого ознакомления с устройством станка, техникой безопасности, способом заправки его водой с песчаным абразивом, способом изменения угла резки.